基于16S rDNA测序分析早产儿肠道菌群变化与GDD的相关性研究

缪丹, 谭琳, 张梅, 匡晓妮, 陈桃, 周戴, 陈翔宇, 马祺

湖南师范大学学报医学版 ›› 2025, Vol. 22 ›› Issue (4) : 40-47.

PDF(2940 KB)
PDF(2940 KB)
湖南师范大学学报医学版 ›› 2025, Vol. 22 ›› Issue (4) : 40-47.
临床医学

基于16S rDNA测序分析早产儿肠道菌群变化与GDD的相关性研究

  • 缪丹, 谭琳, 张梅, 匡晓妮, 陈桃, 周戴, 陈翔宇, 马祺
作者信息 +

Study on the correlation between gut microbiota changes and global developmental delay in premature infants via 16S rDNA sequencing

  • MIAO Dan, TAN Lin, ZHANG Mei, KUANG Xiaoni, CHEN Tao, ZHOU Dai, CHEN Xiangyu, MA Qi
Author information +
文章历史 +

摘要

目的: 使用16S rDNA高通量测序技术检测全面性发育迟缓(global developmental delay,GDD)早产儿肠道菌群变化,探究肠道菌群与早产儿GDD发生的相关性。方法: 选取本院就诊胎龄32~36周初诊早产儿57例,其中23例GDD早产儿为实验组,34例无GDD的早产儿为对照组,均收集新鲜大便标本,使用16S rDN测序检测肠道菌群并进行生物信息学分析,比较分析两组早产儿肠道菌群的差异性。结果: 两组在肠道菌群的群落构成、物种丰度和代谢通路上均存在一定差异。在门水平上,广古菌门(Euryarchaeota)仅出现在实验组(0.023%,P<0.05),经错误发现率(false discovery rate,FDR)校正后Q=0.42。线性判别分析效应大小(linear discriminant analysis effect size,LEfSe)软件分析则表明营发酵单胞菌属(Dysgonomonas)在GDD患者中表现出高丰度。实验组在MetaCyc模块、CAZY模块、GMM代谢模块和GBM神经递质模块的多个通路发生功能变化。结论: 与无GDD的早产儿相比,GDD早产儿存在肠道菌群失调,广古菌门、营发酵单胞菌属相对丰度可能增加,因此造成代谢通路和肠脑轴功能改变,但目前对于GDD早产儿肠道菌群的改变仍未有统一结论,仍需进一步深入研究。

Abstract

Objective To investigate changes in the gut microbiota of preterm infants with Global Developmental Delay (GDD) using 16S rDNA high-throughput sequencing technology and explore the correlation between gut microbiota and GDD in preterm infants. Methods A total of 57 preterm infants with a gestational age of 32-36 weeks were enrolled, including 23 GDD infants (experimental group) and 34 non-GDD infants (control group). Fresh stool specimens were collected from all participants.16S rDNA sequencing was performed to analyze gut microbiota composition, followed by bioinformatics analysis to compare differences between the two groups. Results Differences were observed in the community structure, species abundance, and metabolic pathways of gut microbiota between the two groups. At the phylum level, Euryarchaeota was exclusively detected in the experimental group (0.023%, P<0.05). After corrected by False Discovery Rate (FDR), Q value was 0.42. Linear Discriminant Analysis Effect Size (LEfSe) revealed a higher abundance of the genus Dysgonomonas in GDD infants. Functional changes were identified in multiple pathways within MetaCyc modules, CAZY modules, GMM metabolic modules, and GBM neurotransmitter modules in the experimental group. Conclusion Compared to non-GDD preterm infants, GDD preterm infants exhibit gut microbiota dysbiosis, characterized by increased relative abundances of Euryarchaeota and Dysgonomonas, which may contribute to altered metabolic pathways and gut-brain axis function. However, currently, the alterations in gut microbiota of GDD preterm infants remain inconclusive, warranting further in-depth research.

关键词

早产儿 / 肠道菌群 / 发育迟缓 / 16S rDNA测序

Key words

premature infants / gut microbiota / delayed development / 16S rDNA sequencing

引用本文

导出引用
缪丹, 谭琳, 张梅, 匡晓妮, 陈桃, 周戴, 陈翔宇, 马祺. 基于16S rDNA测序分析早产儿肠道菌群变化与GDD的相关性研究[J]. 湖南师范大学学报医学版. 2025, 22(4): 40-47
MIAO Dan, TAN Lin, ZHANG Mei, KUANG Xiaoni, CHEN Tao, ZHOU Dai, CHEN Xiangyu, MA Qi. Study on the correlation between gut microbiota changes and global developmental delay in premature infants via 16S rDNA sequencing[J]. Journal of Hunan Normal University(Medical Science). 2025, 22(4): 40-47
中图分类号: R737   

参考文献

[1] ANTOLOVICH G, COOPER MS.Global developmental delay: A global misnomer[J]. J Paediatr Child Health, 2025, 61(1): 127.
[2] BALLANTYNE M, BENZIES KM, MCDONALD S, et al.Risk of developmental delay: Comparison of late preterm and full term Canadian infants at age 12 months[J]. Early Hum Dev, 2016, 101: 27-32.
[3] CUNA A, MOROWITZ MJ, AHMED I, et al.Dynamics of the preterm gut microbiome in health and disease[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G411-g419.
[4] JONES HJ, BOURKE CD, SWANN JR, et al.Malnourished microbes: host-microbiome interactions in child undernutrition[J]. Annu Rev Nutr, 2023, 43: 327-353.
[5] MEHTA S, HUEY SL, MCDONALD D, et al.Nutritional interventions and the gut microbiome in Children[J]. Annu Rev Nutr, 2021, 41: 479-510.
[6] LOONG SK, KHOR CS, JAFAR FL, et al.Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria[J]. J Clin Lab Anal, 2016, 30(6): 1056-1060.
[7] GARCÍA-LÓPEZ R, CORNEJO-GRANADOS F, LOPEZ-ZAVALA AA, et al. OTUs and ASVs produce comparable taxonomic and diversity from shrimp microbiota 16S profiles using tailored abundance filters[J]. Genes (Basel), 2021, 12(4): 564.
[8] FUNG C, RUSLING M, LAMPETER T, et al.Automation of QIIME2 Metagenomic Analysis Platform[J]. Curr Protoc, 2021, 1(9): e254.
[9] BÉLANGER SA, CARON J. Evaluation of the child with global developmental delay and intellectual disability[J]. Paediatr Child Health, 2018, 23(6): 403-419.
[10] CHOO YY, AGARWAL P, HOW CH, et al.Developmental delay: identification and management at primary care level[J]. Singapore Med J, 2019, 60(3): 119-123.
[11] WOODS E, SPILLER M, BALASUBRAMANIAN M.Report of two children with global developmental delay in association with de novo TLK2 variant and literature review[J]. Am J Med Genet A, 2022, 188(3): 931-940.
[12] 缪婧, 包云光, 江米足. 肠道菌群与GH-IGF-1轴相关性研究进展[J]. 国际儿科学杂志, 2021, 48(11): 741-744.
[13] CHEN Y, FENG S, LI Y, et al.Gut microbiota and intestinal immunity-A crosstalk in irritable bowel syndrome[J]. Immunology, 2024, 172(1): 1-20.
[14] GÓRALCZYK-BIŃKOWSKA A, SZMAJDA-KRYGIER D, KOZŁOWSKA E. The microbiota-gut-brain axis in psychiatric disorders[J]. Int J Mol Sci, 2022, 23(19): 11245.
[15] 石丽云, 王爱萍. 生长激素与肠道菌群相关性研究进展[J]. 临床儿科杂志, 2022, 40(12): 955-959.
[16] 徐磊, 倪震, 张缨. 运动、肠道菌群代谢物——短链脂肪酸与骨骼肌代谢调控[J]. 中国生物化学与分子生物学报, 2022, 38(1): 1-7.
[17] JI P, WANG N, YU Y, et al.Single-cell delineation of the microbiota-gut-brain axis: Probiotic intervention in Chd8 haploinsufficient mice[J]. Cell Genom, 2025, 5(2): 100768.
[18] LAZAR L, ESHEL A, MOADI L, et al.Children with idiopathic short stature have significantly different gut microbiota than their normal height siblings: a case-control study[J]. Front Endocrinol (Lausanne), 2024, 15: 1343337.
[19] ZHUANG SQ, MAO YX, DENG FC, et al.[Comparative analysis of metagenomic and 16S rDNA sequencing in gut microbiota of healthy elderly][J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2022, 56(11): 1618-1624.
[20] 孙一凡, 谭亚芳, 潘志远, 等. 肠道微生物在炎症性肠病中的研究进展[J]. 中华炎性肠病杂志, 2023, 07(3): 292-296.
[21] BOGAERT D, VAN BEVEREN GJ, DE KOFF EM, et al. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites[J]. Cell Host Microbe, 2023, 31(3): 447-460. e446.
[22] 段昌海, 张翠景, 孙艺华, 等. 新型产甲烷古菌研究进展[J]. 微生物学报, 2019, 59(06): 981-995.
[23] 任师杰, 孔令豆, 刘骏, 等. 产甲烷古菌的分类及代谢途径研究进展[J]. 中国生物工程杂志, 2024, 44(09): 100-112.
[24] HIRONAGA M, YAMANE K, INABA M, et al.Characterization and antimicrobial susceptibility of Dysgonomonas capnocytophagoides isolated from human blood sample[J]. Jpn J Infect Dis, 2008, 61(3): 212-213.
[25] HUANG Y, YU Y, ZHAN S, et al.Dual oxidase Duox and Toll-like receptor 3 TLR3 in the Toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in Hermetia illucens L[J]. PLoS One, 2020, 15(4): e0225873.
[26] SCHALL SE, BLYTH DM, MCCARTHY SL.Dysgonomonas capnocytophagoides Bacteremia in a Patient With Stage IV Colon Adenocarcinoma[J]. Cureus, 2021, 13(7): e16381.
[27] CLARK A, MACH N.Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes[J]. J Int Soc Sports Nutr, 2016, 13: 43.
[28] QI X, YUN C, PANG Y, et al.The impact of the gut microbiota on the reproductive and metabolic endocrine system[J]. Gut Microbes, 2021, 13(1): 1-21.
[29] VALDES AM, WALTER J, SEGAL E, et al.Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361: k2179.
[30] CERDÓ T, RUIZ-RODRÍGUEZ A, ACUÑA I, et al. Infant gut microbiota contributes to cognitive performance in mice[J]. Cell Host Microbe, 2023, 31(12): 1974-1988. e4.
[31] ROBERTSON RC, MANGES AR, FINLAY BB, et al.The Human Microbiome and Child Growth - First 1000 Days and Beyond[J]. Trends Microbiol, 2019, 27(2): 131-147.

基金

湖南省自然科学青年基金项目“ERCC3截短突变促进乳腺癌发生发展的机制与靶向干预研究”(2025JJ60670); 长沙自然科学基金项目“ERCC3基因突变通过调控TGF-β/SMAD信号通路参与乳腺癌发生发展的机制研究”(kq2403186); 长沙市2022年度指导性科技计划项目“早产儿发育迟缓与肠道菌群关系的研究”(KZD22080); 长沙市妇幼保健院院级科研项目“早产儿发育迟缓与肠道菌群关系的研究”(202205)

PDF(2940 KB)

Accesses

Citation

Detail

段落导航
相关文章

/