基于ABCB1基因高表达的黑色素瘤达卡巴嗪耐药性分析及靶向逆转研究

廖羿龙, 邓远雄

湖南师范大学学报医学版 ›› 2025, Vol. 22 ›› Issue (3) : 8-14.

PDF(3632 KB)
PDF(3632 KB)
湖南师范大学学报医学版 ›› 2025, Vol. 22 ›› Issue (3) : 8-14.
基础医学

基于ABCB1基因高表达的黑色素瘤达卡巴嗪耐药性分析及靶向逆转研究

  • 廖羿龙, 邓远雄
作者信息 +

Analysis of dacarbazine resistance in melanoma mediated by abcb1 overexpression and its reversal through targeted inhibition

  • LIAO Yilong, DENG Yuanxiong
Author information +
文章历史 +

摘要

目的: 本研究旨在通过黑色素瘤耐药细胞株的构建以探究ATP结合盒B亚家族1转运蛋白(ABCB1)基因高表达所驱动的黑色素瘤A375细胞中达卡巴嗪耐药性及其靶向逆转策略。方法: 通过逐步提高达卡巴嗪浓度并对黑色素瘤A375细胞进行长期诱导以构建A375黑色素瘤达卡巴嗪耐药细胞株(A375-DacR)。利用CCK-8法和流式细胞凋亡实验评估耐药细胞株耐药水平。通过qPCR及Western Blot检测A375细胞及A375耐药细胞(A375-DacR)中ABCB1基因及其编码蛋白P-gp的表达水平。通过流式细胞术检测细胞周期分布。利用ABCB1靶向抑制剂处理达卡巴嗪耐药细胞株,评估耐药性逆转效果。结果: 成功构建黑色素瘤A375达卡巴嗪耐药细胞株(A375-DacR),耐药指数>5;A375-DacR细胞中ABCB1基因的mRNA水平及蛋白表达显著上调;相较于A375亲本细胞,A375-DacR细胞出现了一定程度的G0/G1期阻滞;靶向抑制ABCB1后,其编码蛋白P-gp表达降低,A375-DacR细胞在达卡巴嗪作用下存活率及克隆形成率下降。结论: 经长期诱导后A375-DacR细胞群体出现了向静止期(G0期)的转变以适应达卡巴嗪治疗的压力。此外,ABCB1基因及其编码蛋白P-gp高表达是导致黑色素瘤A375耐药细胞耐药性形成的核心驱动因素,抑制ABCB1后A375-DacR细胞对达卡巴嗪敏感性恢复。本研究表明靶向ABCB1可能是治疗黑色素瘤达卡巴嗪耐药的有效途径。

Abstract

Objective The aim of this study was to explore the resistance of dacarbazine in melanoma A375 cells driven by the high expression of ABCB1 gene and its targeted reversal strategy through the construction of melanoma drug-resistant cell lines. Methods A375 melanoma dacarbazine resistant cell line (A375-DacR) was constructed by gradually increasing Dacarbazine concentration and long-term induction of melanoma A375 cells. CCK-8 assay and flow cytometry were used to evaluate the drug resistance level of drug-resistant cell lines. The expression levels of ABCB1 gene and its coding protein P-gp in A375 cells and A375-DACR cells were detected by qPCR and Western Blot. The cell cycle distribution was detected by flow cytometry. Dacarbazine resistant cell lines were treated with ABCB1-targeted inhibitors to evaluate the effect of resistance reversal. Results The dacarbazine-resistant A375 melanoma cell line (A375-DacR) was successfully constructed with a resistance index greater than 5. The mRNA and protein expression levels of ABCB1 in A375-DacR cells were significantly upregulated, highlighting its pivotal role in the development of drug resistance. Compared to parental A375 cells, A375-DacR cells exhibited a notable G0/G1 phase arrest. Following targeted inhibition of ABCB1, the expression of its encoded protein P-gp was reduced, leading to a decreased survival rate and clonogenic capacity of A375-DacR cells upon dacarbazine treatment. Conclusion Following long-term induction, the A375-DacR cell population exhibited a transition into the quiescent phase (G0 phase) as an adaptive response to the selective pressure of dacarbazine treatment. Moreover, the high expression of the ABCB1 gene and its encoded protein P-gp was identified as a key driver of dacarbazine resistance in melanoma A375-resistant cells. Inhibition of ABCB1 effectively restored the sensitivity of A375-DacR cells to dacarbazine. This study suggests that targeting ABCB1 may serve as an effective strategy for overcoming dacarbazine resistance in melanoma therapy.

关键词

黑色素瘤A375细胞 / 达卡巴嗪 / 耐药细胞株 / ATP结合盒B亚家族1转运蛋白 / 耐药性 / 靶向逆转

Key words

melanoma A375 cells / dacarbazine / drug-resistant cell line / abcb1 / drug resistance / targeted reversal

引用本文

导出引用
廖羿龙, 邓远雄. 基于ABCB1基因高表达的黑色素瘤达卡巴嗪耐药性分析及靶向逆转研究[J]. 湖南师范大学学报医学版. 2025, 22(3): 8-14
LIAO Yilong, DENG Yuanxiong. Analysis of dacarbazine resistance in melanoma mediated by abcb1 overexpression and its reversal through targeted inhibition[J]. Journal of Hunan Normal University(Medical Science). 2025, 22(3): 8-14
中图分类号: R96   

参考文献

[1] GUO W, WANG H, LI C.Signal pathways of melanoma and targeted therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 424.
[2] CHU P Y, CHEN Y F, LI C Y, et al.Influencing factors associated with lymph node status in patients with cutaneous melanoma: An asian population study[J]. J Chin Med Assoc, 2022, 86(1): 72-79.
[3] FANE L S, WEI A H, TRIPATHI R, et al.Asian American and pacific islander patients with melanoma have increased odds of treatment delays: A cross-sectional study[J]. J Am Acad Dermatol, 2023, 89(3): 529-536.
[4] RYDÉN V, EL‐NAGGAR A I, KOLIADI A, et al. The role of dacarbazine and temozolomide therapy after treatment with immune checkpoint inhibitors in malignant melanoma patients: A case series and meta‐analysis[J]. Pigment Cell Melanoma Res, 2024, 37(3): 352-362.
[5] EGGERMONT A M M, KIRKWOOD J M. Re-evaluating the role of dacarbazine in metastatic melanoma: What have we learned in 30 years?[J]. Eur J Cancer, 2004, 40(12): 1825-1836.
[6] BOUCHEREAU S, CHAPLAIN L, FORT M, et al.Impact of prior treatment with immune checkpoint inhibitors on dacarbazine efficacy in metastatic melanoma[J]. Br J Cancer, 2021, 125(7): 948-954.
[7] CANNELLA L, DELLA MONICA R, MARRETTA A L, et al.The impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation on the outcomes of patients with leiomyosarcoma treated with dacarbazine[J]. Cells, 2023, 12(12): 1635.
[8] CASTRO M V, BARBERO G A, MÁSCOLO P, et al. ROR2 increases the chemoresistance of melanoma by regulating p53 and Bcl2-family proteins via ERK hyperactivation[J]. Cell Mol Biol Lett, 2022, 27(1): 23.
[9] MOHAMMADI A, NAJAFI S, AMINI M, et al.B7H6 silencing increases chemosensitivity to dacarbazine and suppresses cell survival and migration in cutaneous melanoma[J]. Melanoma Res, 2023, 33(3): 173-183.
[10] HU B, ZOU T, QIN W, et al.Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3-ABCB1 signaling in hepatocellular carcinoma[J]. Cancer Res, 2022, 82(20): 3845-3857.
[11] ZHANG H, XU H, ASHBY C R, et al.Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp)[J]. Med Res Rev, 2021, 41(1): 525-555.
[12] GUO Y, ASHRAFIZADEH M, TAMBUWALA M M, et al.P-glycoprotein (P-gp) -driven cancer drug resistance: Biological profile, non-coding RNAs, drugs and nanomodulators[J]. Drug Discov Today, 2024, 29(11): 104161.
[13] VAIDYANATHAN A, SAWERS L, GANNON A L, et al.ABCB1(MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells[J]. Br J Cancer, 2016, 115(4): 431-441.
[14] ZENG R, YANG X M, LI H W, et al.Simplified derivatives of tetrandrine as potent and specific P-gp inhibitors to reverse multidrug resistance in cancer chemotherapy[J]. J Med Chem, 2023, 66(6): 4086-4105.
[15] VEIDER F, HADDADZADEGAN S, SANCHEZ ARMENGOL E, et al.Inhibition of P-glycoprotein-mediated efflux by thiolated cyclodextrins[J]. Carbohyd Polym, 2024, 327: 121648.
[16] 刘一帆, 罗星, 宋天慈, 等. 恶性黑色素瘤靶向治疗及其耐药机制研究进展[J]. 昆明医科大学学报, 2025, 46(2): 158-163.
[17] KOZAR I, MARGUE C, ROTHENGATTER S, et al.Many ways to resistance: How melanoma cells evade targeted therapies[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 313-322.
[18] 陈兆鑫, 林海珊, 俞静. 分子靶向药物联合免疫检查点抑制剂治疗晚期恶性黑色素瘤的研究进展[J]. 中国医院用药评价与分析, 2017, 17(8): 1009-1010.
[19] 赵蓓, 施小琪, 唐雪梅, 等. 黑色素瘤senp1蛋白质参与达卡巴嗪耐药性的探究[J]. 首都医科大学学报, 2024, 45(1): 97-103.
[20] CATALANO A, IACOPETTA D, CERAMELLA J, et al.Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies[J]. Molecules, 2022, 27(3): 616.
[21] MAGARBEH L, HASSEL C, CHOI M, et al.ABCB1 gene variants and antidepressant treatment outcomes: a systematic review and meta‐analysis including results from the CAN‐BIND‐1 study[J]. Clin Pharmacol Ther, 2023, 114(1): 88-117.
[22] ZHANG X C, HAN L, ZHAO Y.Thermodynamics of ABC transporters[J]. Protein Cell, 2016, 7(1): 17-27.
[23] TIAN Y, LEI Y, WANG Y, et al.Mechanism of multidrug resistance to chemotherapy mediated by P-glycoprotein (review)[J]. Int J Oncol, 2023, 63(5): 119.
[24] MIRZAEI S, GHOLAMI M H, HASHEMI F, et al.Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects[J]. Drug Discov Today, 2022, 27(2): 436-455.
[25] WOUTERS J, STAS M, GREMEAUX L, et al.The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis[J]. PLoS ONE, 2013, 8(10): e76550.
[26] ZHANG L, LI Y, HU C, et al.CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells[J]. Mol Cancer, 2022, 21(1): 103.
[27] RUKSHA T G.MicroRNAs’ control of cancer cell dormancy[J]. Cell Div, 2019, 14(1): 11.
[28] RISSON E, NOBRE A R, MAGUER-SATTA V, et al.The current paradigm and challenges ahead for the dormancy of disseminated tumor cells[J]. Nature Cancer, 2020, 1(7): 672-680.

基金

湖南省自然科学基金“基于SCFA-GPR41/43功能轴研究白背三七多糖治疗2型糖尿病的靶点和机制”(2020JJ4437)

PDF(3632 KB)

Accesses

Citation

Detail

段落导航
相关文章

/