基于多模态超声构建多元回归模型预测Luminal型与非Luminal型乳腺癌的临床价值

康锦涓, 黄玲, 于鹏, 邱晶晶, 蒋宇阳, 王金荣

湖南师范大学学报医学版 ›› 2025, Vol. 22 ›› Issue (3) : 126-133.

PDF(1902 KB)
PDF(1902 KB)
湖南师范大学学报医学版 ›› 2025, Vol. 22 ›› Issue (3) : 126-133.
临床医学

基于多模态超声构建多元回归模型预测Luminal型与非Luminal型乳腺癌的临床价值

  • 康锦涓, 黄玲, 于鹏, 邱晶晶, 蒋宇阳, 王金荣
作者信息 +

Clinical value of a multiple regression model based on multimodal ultrasound for predicting luminal and non-luminal breast cancer subtypes

  • KANG Jinjuan, HUANG Ling, YU Peng, QIU Jingjing, JIANG Yuyang, WANG Jinrong
Author information +
文章历史 +

摘要

目的: 分析不同乳腺癌的多模态超声图像特征,探讨其在分子分型中的诊断价值。方法: 纳入本院120例乳腺癌患者,以病理诊断为金标准,提取常规超声(ultrasonic imaging,US)、应变超声弹性成像(strain ultrasound elastography,SUE)及超声造影(contrast-enhanced ultrasound,CEUS)的检查结果及相关临床数据。采用卡方检验筛选组间差异特征,双向逐步Logistic回归分析构建分子分型(Luminal型与非Luminal型)预测模型;通过ROC曲线评估单模态及多模态联合诊断效能。结果: US检查显示,Luminal型(LA/LB)与淋巴结形态、增强后范围、内部回声显著相关,非Luminal型(HER2+/TNBC)与病灶形态、钙化、淋巴结形态及边界显著相关;SUE结果显示,各分子亚型均与弹性评分显著相关;CEUS结果显示,Luminal与非Luminal分型均与有无缺损、增强后范围显著相关;构建的预测模型AUC分别为0.859(Luminal型内部分型)和0.947(非Luminal型鉴别)。效能对比结果显示,多模态超声联合模型较单一模型具更优的诊断效能。结论: 多模态超声可有效区分乳腺癌分子分型,联合模型显著提升诊断效能,为临床精准分型提供影像学依据。

Abstract

Objective To analyze the multimodal ultrasound features of different breast cancers (BC) and explore their diagnostic value in molecular subtyping. Methods This study included 120 BC patients admitted to our hospital, with pathological diagnosis as the gold standard. Data from ultrasonic imaging (US), strain ultrasound elastography (SUE), contrast-enhanced ultrasound (CEUS), and relevant clinical information were collected. Chi-square tests were used to screen for significantly different features between groups, and two-way stepwise logistic regression analysis was performed to construct prediction models for molecular subtypes (Luminal vs. non-Luminal). Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic efficacy of single-modal and multimodal combined ultrasound techniques. Results US examination showed that Luminal subtypes (LA/LB) were significantly correlated with lymph node morphology, enhanced range, and internal echo, while non-Luminal subtypes (HER2+/TNBC) were significantly associated with lesion morphology, calcification, lymph node morphology, and margin. SUE results indicated that all molecular subtypes were significantly correlated with elasticity scores. CEUS analysis revealed that both Luminal and non-Luminal subtypes were significantly associated with enhancement defects and enhanced range. The area under the ROC curve (AUC) of the constructed prediction models was 0.859 for Luminal subtype differentiation and 0.947 for non-Luminal subtype discrimination. Efficacy comparison showed that the multimodal ultrasound combined model exhibited superior diagnostic performance compared with single-modal models. Conclusion Multimodal ultrasound can effectively distinguish BC molecular subtypes, and the combined model significantly improves diagnostic efficacy, providing an imaging basis for clinical precise subtyping.

关键词

乳腺癌 / 多模态超声 / 超声造影 / 分子分型

Key words

breast cancer / multimodal ultrasound / contrast-enhanced ultrasound / molecular subtypes

引用本文

导出引用
康锦涓, 黄玲, 于鹏, 邱晶晶, 蒋宇阳, 王金荣. 基于多模态超声构建多元回归模型预测Luminal型与非Luminal型乳腺癌的临床价值[J]. 湖南师范大学学报医学版. 2025, 22(3): 126-133
KANG Jinjuan, HUANG Ling, YU Peng, QIU Jingjing, JIANG Yuyang, WANG Jinrong. Clinical value of a multiple regression model based on multimodal ultrasound for predicting luminal and non-luminal breast cancer subtypes[J]. Journal of Hunan Normal University(Medical Science). 2025, 22(3): 126-133
中图分类号: R737.9    R445.1   

参考文献

[1] KASHYAP D, PAL D, SHARMA R, et al.Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures[J]. Biomed Res Int, 2022 , 2022: 9605439.
[2] OBEAGU EI, OBEAGU GU.Breast cancer: A review of risk factors and diagnosis[J]. Medicine (Baltimore) , 2024 , 103(3): e36905.
[3] DA COSTA VIEIRA RA, BILLER G, UEMURA G, et al. Breast cancer screening in developing countries[J]. Clinics (Sao Paulo), 2017, 72(4): 244-253.
[4] REN W, CHEN M, QIAO Y, et al.Global guidelines for breast cancer screening: A systematic review[J]. Breast, 2022 , 64: 85-99.
[5] LI Z, LIU X, GAO Y, et al.Ultrasound-based radiomics for early predicting response to neoadjuvant chemotherapy in patients with breast cancer: a systematic review with meta-analysis[J]. Radiol Med, 2024 , 129(6): 934-944.
[6] GUO R, LU G, QIN B, et al.Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review[J]. Ultrasound Med Biol, 2018 , 44(1): 37-70.
[7] PAN HY, ZHANG Q, WU WJ, et al.Preoperative neoadjuvant chemotherapy in patients with breast cancer evaluated using strain ultrasonic elastography[J]. World J Clin Cases, 2022 , 10(21): 7293-7301.
[8] VARGHESE BA, LEE S, CEN S, et al.Characterizing breast masses using an integrative framework of machine learning and CEUS-based radiomics[J]. J Ultrasound, 2022, 25(3): 699-708.
[9] SULTAN LR, SCHULTZ SM, CARY TW, et al.Machine learning to improve breast cancer diagnosis by multimodal ultrasound[J]. IEEE Int Ultrason Symp, 2018, 2018: 10.
[10] 刘伶丹. 多模态超声在不同分子分型乳腺癌中的诊断价值分析[J]. 基层医学论坛, 2024, 28(07): 122-125.
[11] 廖春旭, 张慧娟, 张丽娟, 等. T1期乳腺癌多模态超声影像特征与分子分型相关性研究[J]. 医学影像学杂志, 2024, 34(02): 52-56.
[12] 中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范 (2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1187.
[13] 徐海峰, 张毅, 刘晨, 等. 乳腺癌患者超声影像学表现与病理类型及组织学分级的关系[J]. 癌症进展, 2022, 20(9): 942-945.
[14] PAN HY, ZHANG Q, WU WJ, et al.Preoperative neoadjuvant chemotherapy in patients with breast cancer evaluated using strain ultrasonic elastography[J]. World J Clin Cases, 2022 , 10(21): 7293-7301.
[15] ZHU JY, HE HL, JIANG XC, et al.Multimodal ultrasound features of breast cancers: correlation with molecular subtypes[J]. BMC Med Imaging, 2023 , 23(1): 57.
[16] GUBARKOVA EV, SOVETSKY AA, VORONTSOV DA, et al.Compression optical coherence elastography versus strain ultrasound elastography for breast cancer detection and differentiation: pilot study[J]. Biomed Opt Express, 2022 , 13(5): 2859-2881.
[17] 盛志娟, 杨沁惠, 董爱萍, 等. 血清CA153, CA125水平与老年Luminal型乳腺癌患者内分泌治疗耐药的关系[J]. 中国肿瘤外科杂志, 2024, 16(5): 451-457.
[18] 李俊杰. 早期乳腺癌局部治疗与全身治疗的进展与展望[J]. 中国癌症杂志, 2025, 35(2): 205-212.
[19] YI WP, MA ZJ, ZHAO J, et al.The value of multimodal ultrasound in diagnosing different molecular typing of breast cancer and breast hyperplasia nodules[J]. China Medical Equipment, 2023, 20(04): 70-75.
[20] ZHAO YJ, WU TQ, ZHAO YR, et al.Correlation between ultrasonic imaging features and molecular subtypes of elderly breast cancer[J]. Pract Geriatr, 2024, 38(02): 166-170.
[21] KANG J, WU T, ZHANG L, et al.Comparative study of multimodal ultrasonographic features and clinicopathological appearances of breast cancer with different molecular subtypes[J]. Chin J Ultrasonogr, 2020, 29(4): 7.
[22] YOO J, SEO BK, PARK EK, et al.Tumor stiffness measured by shear wave elastography correlates with tumor hypoxia as well as histologic biomarkers in breast cancer[J]. Cancer Imaging, 2020 , 20(1): 85.
[23] 巩海燕, 王慧, 邓晶, 等. 不同Luminal型乳腺癌超声造影特征分析[J]. 实用临床医药杂志, 2021, 25(13): 19-23.
[24] DONG J, WU PX, ZHOU FS, et al.Characteristics and diagnostic value of contrast-enhanced ultrasound in breast cancer with different molecular typing[J]. J Med Imaging, 2022, 32(03): 441-444.
[25] YAN C, LUO Z, LIN Z, et al.Shear Wave Elastography-Assisted Ultrasound Breast Image Analysis and Identification of Abnormal Data[J]. J Healthc Eng, 2022 , 2022: 5499354.
[26] ZHOU J, JIN AQ, ZHOU SC, et al.Application of preoperative ultrasound features combined with clinical factors in predicting HER2-positive subtype (non-Luminal) breast cancer[J]. BMC Med Imaging, 2021 , 21(1): 184.
[27] CHOI WJ, SIM H, KIM HJ, et al.Association of mammography and ultrasound features with MammaPrint in patients with estrogen receptor-positive, HER2-negative, node-positive invasive breast cancer[J]. Acta Radiol, 2021 , 62(12): 1592-1600.
[28] GONG X, LI Q, GU L, et al.Conventional ultrasound and contrast-enhanced ultrasound radiomics in breast cancer and molecular subtype diagnosis[J]. Front Oncol, 2023 , 13: 1158736.
[29] 施维, 夏威, 黄敏, 等. 基于超声和临床特征决策树模型预测乳腺癌分子亚型[J]. 肿瘤影像学, 2022, 31(3): 249-257.
[30] LI H, CHEN L, LIU M, et al.Diagnostic value of multimodal ultrasound for breast cancer and prediction of sentinel lymph node metastases[J]. Front Cell Dev Biol, 2024, 12: 1431883.

基金

2024年度江苏省青年科技人才托举工程(JSTJ-2024-615)

PDF(1902 KB)

Accesses

Citation

Detail

段落导航
相关文章

/