CAD对重型与危重型Omicron感染者的临床意义

朱明新, 黄健梁, 夏铭锴, 彭波, 李琳珺, 章建辉, 文芳, 胡林琳, 雷明盛

湖南师范大学学报医学版 ›› 2023, Vol. 20 ›› Issue (3) : 47-53.

PDF(2756 KB)
PDF(2756 KB)
湖南师范大学学报医学版 ›› 2023, Vol. 20 ›› Issue (3) : 47-53.
临床医学

CAD对重型与危重型Omicron感染者的临床意义

  • 朱明新1, 黄健梁1, 夏铭锴1, 彭波1, 李琳珺3, 章建辉1, 文芳4, 胡林琳1, 雷明盛1,2
作者信息 +

The clinical significance of CAD in patients with severe and critically-severe Omicron infections

  • ZHU Mingxin1, HUANG Jianliang1, XIA Mingkai1, PENG Bo1, LI Linjun3, ZHANG Jianhui1, WEN Fang4, HU Linlin1, LEI Mingsheng1,2
Author information +
文章历史 +

摘要

目的:探讨计算机辅助诊断技术(CAD)对张家界市重型与危重型Omicron感染者的临床意义,为重型与危重型Omicron感染者的救治工作提供更多的参考依据。方法:收集了2022年12月―2023年1月在张家界市人民医院住院治疗的重型与危重型Omicron感染者的一般资料、qSOFA评分、实验室检查、肺部CT等,将肺部CT使用CAD技术进行分割与重建,输出炎症占比,比较重型与危重型患者间临床特征与炎症占比有无差异,并探讨炎症占比与疾病分型之间的关系。结果:共有116名重型、危重型患者被纳入本项研究,年龄中位数73.0(65.0,84.0)岁,60.3%(n=70)的患者入住ICU,86.2%(n=100)患者合并有基础疾病。相比于重型患者,危重型患者有着更高的炎症占比、qSOFA评分、C-反应蛋白、D-二聚体等(P<0.05)。炎症占比越高,疾病进展为危重型的可能性越大(r=0.24,P=0.009),炎症占比在判断病情进展为危重型时的灵敏度、特异度、准确度分别为0.656、0.745、0.638,截断值为31.46%。结论:CAD对于重症COVID-19肺炎患者病情评估有一定的价值,炎症占比越高,疾病进展为危重型的可能性越大,当肺部炎症占比≥31.46%时,患者极有可能进展为危重型。

Abstract

Objective The purpose of this study is to investigate the clinical significance of computer-aided diagnosis (CAD) in patients with severe and critically-severe Omicron infections in Zhangjiajie. The study aims to provide additional references for the treatment of these patients. Method From December 2022 to January 2023, we collected various clinical data such as qSOFA score, laboratory test results, and lung CT scans from patients who were hospitalized with severe and critically-severe Omicron infections. Additionally, in this study, we utilized computer-aided diagnosis to segment and reconstruct the lung CT, enabling us to accurately calculate the proportion of inflammation. Our objective was to compare the clinical characteristics and inflammation proportion of severe and critically-severe, with the aim of identifying any potential differences and exploring the relationship between inflammation proportion and critical illness. Results A total of 116 severe and critically-severe patients were included in this study, The median age of the patients was 73.0(ranging from 65.0 to 84.0) years, and 60.3% (n=70) of patients were admitted to the ICU. Among the patients, 86.2% (n=100) patients had underlying diseases. proportion of inflammation, qSOFA score, C-reactive protein, and D-dimer were higher in critically-severe patients than in severe patients (P<0.05). The higher the proportion of inflammation, the easier it is to develop critical illness (r=0.24, P=0.009). The sensitivity, specificity and accuracy of inflammation proportion in the diagnosis of progress to critically-severe were 0.656, 0.745 and 0.638, the cutoff value was 31.46%. Conclusion Computer-aided diagnosis has a certain value in evaluating the condition of patients with severe COVID-19 pneumonia. The higher the proportion of inflammation, the greater the possibility of the disease progressing to critical illness, it is hypothesized that if the proportion of lung inflammation is equal to or greater than 31.46%, the patient is at a high risk of progressing to critical illness.

关键词

重症COVID-19肺炎 / Omicron毒株 / 计算机辅助诊断技术 / 炎症占比 / 临床特征

Key words

severe COVID-19 pneumonia / Omicron strain / computer-aided diagnosis / proportion of inflammation / clinical characteristics

引用本文

导出引用
朱明新, 黄健梁, 夏铭锴, 彭波, 李琳珺, 章建辉, 文芳, 胡林琳, 雷明盛. CAD对重型与危重型Omicron感染者的临床意义[J]. 湖南师范大学学报医学版. 2023, 20(3): 47-53
ZHU Mingxin, HUANG Jianliang, XIA Mingkai, PENG Bo, LI Linjun, ZHANG Jianhui, WEN Fang, HU Linlin, LEI Mingsheng. The clinical significance of CAD in patients with severe and critically-severe Omicron infections[J]. Journal of Hunan Normal University(Medical Science). 2023, 20(3): 47-53
中图分类号: R563.1   

参考文献

[1] Sievers C, Zacher B, Ullrich A, et al.SARS-CoV-2 Omicron variants BA.1 and BA.2 both show similarly reduced disease severity of COVID-19 compared to Delta, Germany, 2021 to 2022[J]. Euro Surveill, 2022, 27(22): 2200396.
[2] Hu XS, Hu CH, Yang Y, et al.Clinical characteristics and risk factors for severity of COVID-19 outside Wuhan: a double-center retrospective cohort study of 213 cases in Hunan, China[J]. Ther Adv Respir Dis, 2020, 14: 1496-1500.
[3] Zhou LX, Li ZX, Zhou JX, et al.A Rapid, Accurate and Machine-Agnostic Segmentation and Quantification Method for CT-Based COVID-19 Diagnosis[J]. IEEE Trans Med Imaging, 2020, 39(8): 2638-2652.
[4] 新型冠状病毒肺炎诊疗方案 (试行第九版)[J]. 中国医药, 2022, 17(04): 481-487.
[5] Song JU, Sin CK, Park HK, et al.Performance of the quick Sequential (sepsis-related) Organ Failure Assessment score as a prognostic tool in infected patients outside the intensive care unit: a systematic review and meta-analysis[J]. Crit Care, 2018, 22(1): 28.
[6] Chen L, Song H, Wang C, et al.Liver tumor segmentation in CT volumes using an adversarial densely connected network[J]. BMC Bioinformatics, 2019, 20(Suppl 16): 587.
[7] Yu H, Li JQ, Zhang LX, et al.Design of lung nodules segmentation and recognition algorithm based on deep learning[J]. BMC Bioinformatics, 2021, 22(Suppl 5): 314.
[8] Wang S, Kang B, Ma JL, et al.A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19)[J]. Eur Radiol, 2021, 31(8): 6096-6104.
[9] Ramos-Rincon JM, Buonaiuto V, Ricci M, et al.Clinical Characteristics and Risk Factors for Mortality in Very Old Patients Hospitalized with COVID-19 in Spain[J]. J Gerontol A Biol Sci Med Sci, 2020, 76(3): e28-e37.
[10] Citu C, Citu IM, Motoc A, et al.Predictive Value of SOFA and qSOFA for In-Hospital Mortality in COVID-19 Patients: A Single-Center Study in Romania[J]. J Pers Med, 2022, 12(6): 878.
[11] Zhou F, Yu T, Du RH, et al.Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study[J]. Lancet, 2020, 395(10229): 1054-1062.
[12] Francone M, Iafrate F, Masci GM, et al.Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis[J]. European radiology, 2020, 30(12): 6808-6817.
[13] Huang CL, Wang YM, Li XW, et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
[14] Shi CC, Wang LM, Ye J, et al.Predictors of mortality in patients with coronavirus disease 2019: a systematic review and meta-analysis[J]. BMC Infect Dis, 2021, 21(1): 663.
[15] Chan JC, Tsui EL, Wong VC, et al.Prognostication in severe acute respiratory syndrome: a retrospective time-course analysis of 1312 laboratory-confirmed patients in Hong Kong[J]. Respirology (Carlton, Vic. ), 2007, 12(4): 531-542.
[16] Hong KH, Choi JP, Hong SH, et al.Predictors of mortality in Middle East respiratory syndrome (MERS)[J]. Thorax, 2018, 73(3): 286-289.
[17] Westblade LF, Simon MS, Satlin MJ.Bacterial coinfections in coronavirus disease 2019[J]. Trends Microbiol, 2021, 29(10): 930-941.
[18] Ripa M, Galli L, Poli A, et al.Secondary infections in patients hospitalized with COVID-19: incidence and predictive factors[J]. Clin Microbiol Infect, 2021, 27(3): 451-457.

基金

张家界市科技发展重点专项项目(202201); 张家界市永定区科技创新计划项目(202216)

PDF(2756 KB)

Accesses

Citation

Detail

段落导航
相关文章

/