目的:探索超声联合临床指标预测模型在肝母细胞瘤(hepatoblastoma,HB)诊断中的应用价值。方法:回顾性分析湖南省人民医院经手术切除或穿刺活检病理证实的81例肝脏局灶性病变,以病理结果为参考标准分为HB组及非HB组。记录一般临床资料、血清甲胎蛋白(AFP)水平、血小板浓度、肿瘤的最大径及超声征象,组间比较分别采用Mann-Whitney U检验、独立样本t检验、卡方检验,将有组间差异的指标采用二元logistic回归来分析诊断HB的影响因素,建立预测模型并得出简化方程,采用受试者工作特征曲线(ROC)比较单一指标和联合预测模型的诊断效能。结果:组间比较年龄、AFP、血小板、肿瘤最大径、液化、出血、转移、血管受累差异有统计学意义(P<0.05);二元logistic回归分析显示年龄、最大径、液化是HB的独立影响因素并纳入预测模型得出简化方程,ROC曲线显示预测模型及简化方程较单一指标的诊断效能更高。结论:超声联合临床指标预测模型在肝母细胞瘤诊断中的应用价值优于单一指标,运用简化方程简便快捷,可提高肝母细胞瘤的检出率,为临床诊断肝母细胞瘤提供参考依据。
Abstract
Objective To explore the application value of the combined prediction model of ultrasound and clinical indicators in the diagnosis of hepatoblastoma (HB). Methods A retrospective analysis of 81 cases of focal liver lesions confirmed by surgical resection or biopsy in Hunan Provincial People's Hospital was conducted. Based on the pathological results, they were divided into HB group and non HB group. General clinical data, AFP, platelet concentration, maximum diameter of tumor, and ultrasound signs were recorded. Mann-Whitney U test, independent sample t-test, and chi-square test were used for comparison between groups, Using binary logic regression to analyze the influencing factors for the diagnosis of HB and establish a predictive model for indicators with inter group differences, the diagnostic efficacy of a single indicator and a joint predictive model were compared using receiver operating characteristic (ROC). Results There were significant differences in age, AFP, platelets, maximum tumor diameter, liquefaction, bleeding, metastasis, and vascular involvement between the groups (P<0.05). The binary logistic regression analysis showed that age, maximum diameter and liquefaction were independent influencing factors of HB, and the simplified equation was obtained by incorporating them into the prediction model. The ROC showed that the prediction model and the simplified equation had higher diagnostic efficiency than the single index. Conclusion The application value of ultrasound combined with clinical indicator prediction model in the diagnosis of hepatoblastoma is superior to that of a single indicator. The use of simplified equations is simple and fast, which can improve the detection rate of hepatoblastoma and provide a reference basis for clinical diagnosis of hepatoblastoma.
关键词
肝母细胞瘤 /
彩色多普勒超声 /
诊断 /
预测模型
Key words
hepatoblastoma /
color doppler ultrasound /
diagnosis /
prediction model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Qiao GL, Chen Z, Wang C, et al.Pure fetal histology subtype was associated with better prognosis of children with hepatoblastoma: A Chinese population-based study[J]. J Gastroenterol Hepatol, 2016, 31(3): 621-627.
[2] Zhi T, Zhang WL, Zhang Y, et al.A new risk-stratification system for hepatoblastoma in children under six years old and the significance for prognosis evaluation-a 14-year retrospective study from a single center[J]. BMC Cancer, 2021, 21(1): 397.
[3] Wu PV, Rangaswami A.Current Approaches in Hepatoblastoma-New Biological Insights to Inform Therapy[J]. Curr Oncol Rep, 2022, 24(9): 1209-1218.
[4] 谭钦, 张明满. 儿童肝母细胞瘤预后相关因素的研究进展[J]. 临床小儿外科杂志, 2021, 20(05): 474-477.
[5] Han H, Ji Z, Ding H, et al.Assessment of blood flow in the hepatic tumors using non-contrast micro flow imaging: Initial experience[J]. Clin Hemorheol Microcirc, 2019, 73(2): 307-316.
[6] Baheti AD, Luana Stanescu A, Li N, et al.Contrast-enhanced CT features of hepatoblastoma: Can we predict histopathology?[J]. Clin Imaging, 2017, 44: 33-37.
[7] 廖雪莲, 蒋莎义, 杨静薇, 等. 基于甲胎蛋白临床诊断肝母细胞瘤行新辅助化疗可行性分析[J]. 临床儿科杂志, 2021, 39(08): 596-599.
[8] Chung EM, Lattin GE Jr, Cube R, et al.From the archives of the AFIP: Pediatric liver masses: radiologic-pathologic correlation. Part 2. Malignant tumors[J]. Radiographics, 2011, 31(2): 483-507.
[9] Feng J, Polychronidis G, Heger U, et al.Incidence trends and survival prediction of hepatoblastoma in children: a population-based study[J]. Cancer Commun (Lond), 2019, 39(1): 62.
[10] Kahla JA, Siegel DA, Dai S, et al.Incidence and 5-year survival of children and adolescents with hepatoblastoma in the United States[J]. Pediatr Blood Cancer, 2022, 69(10): e29763.
[11] 温海娟, 章涤, 黄艳春. 血清AFP、PIVKA-II和VEGF联合检测对肝细胞癌的临床诊断价值[J]. 宁夏医科大学学报, 2019, 41(04): 379-383.
[12] Zhi T, Zhang W, Zhang Y, et al.Clinical Characteristics and Prognosis Analysis of Infantile Hepatoblastoma-A 15-Year Retrospective Single-Center Study[J]. Cancer Manag Res, 2021, 13: 3201-3208.
[13] Cai HY, Yu B, Feng ZC, et al.Clinical significance of CD44 expression in children with hepatoblastoma[J]. Genet Mol Res, 2015, 14(4): 13203-13207.
[14] Maibach R, Roebuck D, Brugieres L, et al.Prognostic stratification for children with hepatoblastoma: the SIOPEL experience[J]. Eur J Cancer, 2012, 48(10): 1543-1549.
[15] Zhang Y, Zhang W, Tang S, et al.A single-center retrospective study of pediatric hepatoblastoma[J]. Oncol Lett, 2016, 12(5): 3919-3925.
[16] Karmazyn B, Rao GS, Johnstone LS, et al.Diagnosis and Follow-up of Incidental Liver Lesions in Children[J]. J Pediatr Gastroenterol Nutr, 2022, 74(3): 320-327.
[17] Lucas B, Ravishankar S, Pateva I.Pediatric Primary Hepatic Tumors: Diagnostic Considerations[J]. Diagnostics (Basel), 2021, 11(2): 333.
[18] 中国抗癌协会小儿肿瘤专业委员会, 中华医学会小儿外科分会肿瘤专业组. 儿童肝母细胞瘤多学科诊疗专家共识 (CCCG-HB-2016)[J]. 中华小儿外科杂志, 2017, 38(10): 733-739.
[19] Baheti AD, Chapman T, Rudzinski E, et al.Diagnosis, histopathologic correlation and management of hepatoblastoma: What the radiologist needs to know[J]. Clin Imaging, 2018, 52: 273-279.
[20] 李理, 刘文, 金科. 先天性肝母细胞瘤CT表现及误诊分析[J]. 中国医学影像学杂志, 2021, 29(04): 358-361.
基金
湖南省教育厅项目(20C1164); 湘财教指[2018]55号(2018SK21216)