宫颈高级别神经内分泌癌的差异基因表达及免疫浸润景观

康佳文, 向小青, 蒋静雯, 郭思慧, 张勇, 李乐赛

湖南师范大学学报医学版 ›› 2023, Vol. 20 ›› Issue (1) : 31-38.

PDF(7589 KB)
PDF(7589 KB)
湖南师范大学学报医学版 ›› 2023, Vol. 20 ›› Issue (1) : 31-38.
临床医学

宫颈高级别神经内分泌癌的差异基因表达及免疫浸润景观

  • 康佳文1, 向小青1, 蒋静雯1, 郭思慧1, 张勇1, 李乐赛2
作者信息 +

Differential gene expression and immune infiltration landscape in high-grade neuroendocrine carcinoma of cervix

  • KANG Jiawen1, XIANG Xiaoqing1, JIANG Jingwen1, GUO Sihui1, ZHANG Yong1, LI Lesai2
Author information +
文章历史 +

摘要

目的: 探索宫颈高级别神经内分泌癌(HGNECC)基因表达特点和免疫浸润状态。方法: 通过整合GTEx、TCGA、GEO数据库关于HGNECC的测序数据,寻找正常样本和肿瘤样本间的差异基因(DEGs),运用GO和KEGG分析探索差异基因相关通路的富集情况。在IMMPORT网站找出免疫相关基因(IRGs)和DEGs通过VENN图求得免疫相关差异基因,应用蛋白互作网络(PPI)及cytoscape软件中MCODE及cytohubba插件找出核心基因(Hubs),运用 CIBERSORT算法进行正常宫颈组织与HGENCC之间的免疫浸润的差异分析,并用ssGSEA算法来评估HGNECC肿瘤内部微环境的免疫浸润情况,比较不同的免疫检查点对在不同免疫活性患者内部的表达情况,并在DGIdb网站预测相应药物-靶点相互作用网络期望探索HGNECC具有潜在疗效的小分子靶向药物。最后免疫组化验证CXCL8在宫颈癌组织中的表达。结果: 通过差异分析,获得了HGNECC中CXCL8、IL1B、CSF2、CCL4、IL10、CCL3、CCL3L3、PTPN11、CBL、SOS1等十个Hub基因;在通过CIBERSORT算法和ssGSEA算法进行免疫浸润分析中,我们发现宫颈高级别神经内分泌肿瘤患者的肥大细胞从静止转变成活化状态具有显著的改变,我们推测患者体内肥大细胞活化程度增大;最后根据预测的Hub基因,药物选择推荐使用ABX-IL8,RILONACEPT等药物。结论: 该研究通过对公共数据进行生物信息学分析,为HGNECC 的临床诊疗提供了新思路。

Abstract

Objective To explore gene expression characteristics and immune infiltration status of high-grade neuroendocrine cervical carcinoma (HGNECC). Methods We integrated the sequencing data of GTEx, TCGA, and GEO databases about patients with normal cervix and HGNECC. Then we searched for differential genes (DEGs) between normal and tumor samples, and GO and KEGG analysis were used to explore the enrichment of differential gene-related pathways. Then immune-related genes (IRGs) and DEGs were identified in IMMPORT website to find immune-related differential genes by VENN plots, and then core genes (Hubs) were identified by protein interaction network (PPI) and MCODE and cytohubba plugins in cytoscape software. Next, we performed the analysis of difference in immune infiltration between normal cervical tissue and HGENCC, and the ssGSEA algorithm was used to assess the immune infiltration of the microenvironment in HGNECC and to compare the expression of different immune checkpoint genes within patients with different immune activity. Finally, we predicted the drug-target interaction network in DGIdb website, expecting to explore potential small molecule targeted drugs with efficacy in HGNECC. Results Through analyzing expression of DEGs between normal and tumor samples, ten Hub genes including CXCL8, IL1B, CSF2, CCL4, IL10, CCL3, CCL3L3, PTPN11, CBL and SOS1 were identified in HGNECC. In the immune infiltration analysis by CIBERSORT algorithm and ssGSEA algorithm, we found a significant change in mast cells from quiescent to activated state in patients with high-grade neuroendocrine tumors of the cervix, and then we hypothesized that the mast cells of activation status were increased in HGNECC patients; Finally, based on the predicted Hub genes, the drug selection for HGNECC patients was recommended for ABX-IL8, RILONACEPT and other drugs. Conclusion This study provides new ideas for the clinical treatment of HGNECC by bioinformatics analysis based on public data.

关键词

宫颈神经内分泌癌 / 免疫景观 / 生物信息学 / 差异基因

Key words

high-grade neuroendocrine cervical carcinoma (HGNECC) / immune landscape / bioinformatics / differential genes

引用本文

导出引用
康佳文, 向小青, 蒋静雯, 郭思慧, 张勇, 李乐赛. 宫颈高级别神经内分泌癌的差异基因表达及免疫浸润景观[J]. 湖南师范大学学报医学版. 2023, 20(1): 31-38
KANG Jiawen, XIANG Xiaoqing, JIANG Jingwen, GUO Sihui, ZHANG Yong, LI Lesai. Differential gene expression and immune infiltration landscape in high-grade neuroendocrine carcinoma of cervix[J]. Journal of Hunan Normal University(Medical Science). 2023, 20(1): 31-38
中图分类号: R737.33   

参考文献

[1] Ishikawa M, Kasamatsu T, Tsuda H, et al.A multi-center retrospective study of neuroendocrine tumors of the uterine cervix: Prognosis according to the new 2018 staging system, comparing outcomes for different chemotherapeutic regimens and histopathological subtypes[J]. Gynecol Oncol, 2019, 155(3): 444-451.
[2] Salvo G, Gonzalez Martin A, Gonzales NR, et al.Updates and management algorithm for neuroendocrine tumors of the uterine cervix[J]. Int J Gynecol Cancer, 2019, 29(6): 986-995.
[3] Gadducci A, Carinelli S, Aletti G.Neuroendrocrine tumors of the uterine cervix: A therapeutic challenge for gynecologic oncologists[J]. Gynecol Oncol, 2017, 144(3): 637-646.
[4] Elsherif S, Odisio E, Faria S, et al.Imaging and staging of neuroendocrine cervical cancer[J]. Abdom Radiol (NY), 2018, 43(12): 3468-3478.
[5] Di Molfetta S, Dotto A, Fanciulli G, et al.Immune Checkpoint Inhibitors: New Weapons Against Medullary Thyroid Cancer?[J]. Front Endocrinol (Lausanne), 2021, 12: 667784.
[6] 张师前, 屈庆喜, 林仲秋. 子宫颈神经内分泌癌诊断与治疗专家指导意见 (2022年版)[J]. 中国实用妇科与产科杂志, 2022, 38(2): 170-176.
[7] Tempfer CB, Tischoff I, Dogan A, et al.Neuroendocrine carcinoma of the cervix: a systematic review of the literature[J]. BMC Cancer, 2018, 18(1): 530.
[8] Pei X, Xiang L, Chen W, et al.The next generation sequencing of cancer-related genes in small cell neuroendocrine carcinoma of the cervix[J]. Gynecol Oncol, 2021, 161(3): 779-786.
[9] Cimic A, Vranic S, Arguello D, et al.Molecular Profiling Reveals Limited Targetable Biomarkers in Neuroendocrine Carcinoma of the Cervix[J]. Appl Immunohistochem Mol Morphol, 2021, 29(4): 299-304.
[10] Inzani F, Angelico G, Santoro A, et al.SATB2 is expressed in neuroendocrine carcinoma of the uterine cervix[J]. Virchows Arch 2022; 480(4): 873-877.
[11] Lin C, He H, Liu H, et al.Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer[J]. Gut, 2019, 68(10): 1764-1773.
[12] Bent R, Moll L, Grabbe S, et al.Interleukin-1 Beta-A Friend or Foe in Malignancies?[J]. Int J Mol Sci, 2018, 19(8): 2155.
[13] Sielska M, Przanowski P, Pasierbińska M, et al.Tumour-derived CSF2/granulocyte macrophage colony stimulating factor controls myeloid cell accumulation and progression of gliomas[J]. Br J Cancer, 2020, 123(3): 438-448.
[14] Tsai HC, Lai YY, Hsu HC, et al.CCL4 Stimulates Cell Migration in Human Osteosarcoma via the mir-3927-3p/Integrin αvβ3 Axis[J]. Int J Mol Sci, 2021, 22(23): 12737.
[15] Hamidullah, Changkija B, Konwar R. Role of interleukin-10 in breast cancer[J]. Breast Cancer Res Treat, 2012, 133(1): 11-21.
[16] Ntanasis-Stathopoulos I, Fotiou D, Terpos E.CCL3 Signaling in the Tumor Microenvironment[J]. Adv Exp Med Biol, 2020, 1231: 13-21.
[17] Chihara K, Kato Y, Yoshiki H, et al.Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells[J]. Sci Rep, 2017, 7(1): 11480.
[18] Xu L, Zhou C, Pan R, et al.PTPN11 hypomethylation is associated with gastric cancer progression[J]. Oncol Lett, 2020, 19(3): 1693-1700.
[19] Belizaire R, Koochaki SHJ, Udeshi ND, et al.CBL mutations drive PI3K/AKT signaling via increased interaction with LYN and PIK3R1[J]. Blood, 2021, 137(16): 2209-2220.
[20] Hillig RC, Bader B.Targeting RAS oncogenesis with SOS1 inhibitors[J]. Adv Cancer Res, 2022, 153: 169-203.
[21] Gay CM, Stewart CA, Park EM, et al.Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities[J]. Cancer Cell, 2021, 39(3): 346-360.
[22] Lantuejoul S, Fernandez-Cuesta L, Damiola F, et al.New molecular classification of large cell neuroendocrine carcinoma and small cell lung carcinoma with potential therapeutic impacts[J]. Transl Lung Cancer Res, 2020, 9(5): 2233-2244.
[23] Takkenkamp TJ, Jalving M, Hoogwater FJH, et al.The immune tumour microenvironment of neuroendocrine tumours and its implications for immune checkpoint inhibitors[J]. Endocr Relat Cancer, 2020, 27(9): R329-R343.
[24] Ribatti D, Annese T, Tamma R.Controversial role of mast cells in breast cancer tumor progression and angiogenesis[J]. Clin Breast Cancer, 2021, 21(6): 486-491.
[25] Lichterman JN, Reddy SM.Mast Cells: A New Frontier for Cancer Immunotherapy[J]. Cells, 2021, 10(6): 1070.

基金

湖南省自然科学基金(grant. 2022JJ30415),湖南省肿瘤医院科研攀登计划资助(ZX2020004-3)

PDF(7589 KB)

Accesses

Citation

Detail

段落导航
相关文章

/