Study on the correlation between gut microbiota changes and global developmental delay in premature infants via 16S rDNA sequencing

MIAO Dan, TAN Lin, ZHANG Mei, KUANG Xiaoni, CHEN Tao, ZHOU Dai, CHEN Xiangyu, MA Qi

Journal of Hunan Normal University(Medical Science) ›› 2025, Vol. 22 ›› Issue (4) : 40-47.

PDF(2940 KB)
PDF(2940 KB)
Journal of Hunan Normal University(Medical Science) ›› 2025, Vol. 22 ›› Issue (4) : 40-47.
Clinical Medicine

Study on the correlation between gut microbiota changes and global developmental delay in premature infants via 16S rDNA sequencing

  • MIAO Dan, TAN Lin, ZHANG Mei, KUANG Xiaoni, CHEN Tao, ZHOU Dai, CHEN Xiangyu, MA Qi
Author information +
History +

Abstract

Objective To investigate changes in the gut microbiota of preterm infants with Global Developmental Delay (GDD) using 16S rDNA high-throughput sequencing technology and explore the correlation between gut microbiota and GDD in preterm infants. Methods A total of 57 preterm infants with a gestational age of 32-36 weeks were enrolled, including 23 GDD infants (experimental group) and 34 non-GDD infants (control group). Fresh stool specimens were collected from all participants.16S rDNA sequencing was performed to analyze gut microbiota composition, followed by bioinformatics analysis to compare differences between the two groups. Results Differences were observed in the community structure, species abundance, and metabolic pathways of gut microbiota between the two groups. At the phylum level, Euryarchaeota was exclusively detected in the experimental group (0.023%, P<0.05). After corrected by False Discovery Rate (FDR), Q value was 0.42. Linear Discriminant Analysis Effect Size (LEfSe) revealed a higher abundance of the genus Dysgonomonas in GDD infants. Functional changes were identified in multiple pathways within MetaCyc modules, CAZY modules, GMM metabolic modules, and GBM neurotransmitter modules in the experimental group. Conclusion Compared to non-GDD preterm infants, GDD preterm infants exhibit gut microbiota dysbiosis, characterized by increased relative abundances of Euryarchaeota and Dysgonomonas, which may contribute to altered metabolic pathways and gut-brain axis function. However, currently, the alterations in gut microbiota of GDD preterm infants remain inconclusive, warranting further in-depth research.

Key words

premature infants / gut microbiota / delayed development / 16S rDNA sequencing

Cite this article

Download Citations
MIAO Dan, TAN Lin, ZHANG Mei, KUANG Xiaoni, CHEN Tao, ZHOU Dai, CHEN Xiangyu, MA Qi. Study on the correlation between gut microbiota changes and global developmental delay in premature infants via 16S rDNA sequencing[J]. Journal of Hunan Normal University(Medical Science). 2025, 22(4): 40-47

References

[1] ANTOLOVICH G, COOPER MS.Global developmental delay: A global misnomer[J]. J Paediatr Child Health, 2025, 61(1): 127.
[2] BALLANTYNE M, BENZIES KM, MCDONALD S, et al.Risk of developmental delay: Comparison of late preterm and full term Canadian infants at age 12 months[J]. Early Hum Dev, 2016, 101: 27-32.
[3] CUNA A, MOROWITZ MJ, AHMED I, et al.Dynamics of the preterm gut microbiome in health and disease[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G411-g419.
[4] JONES HJ, BOURKE CD, SWANN JR, et al.Malnourished microbes: host-microbiome interactions in child undernutrition[J]. Annu Rev Nutr, 2023, 43: 327-353.
[5] MEHTA S, HUEY SL, MCDONALD D, et al.Nutritional interventions and the gut microbiome in Children[J]. Annu Rev Nutr, 2021, 41: 479-510.
[6] LOONG SK, KHOR CS, JAFAR FL, et al.Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria[J]. J Clin Lab Anal, 2016, 30(6): 1056-1060.
[7] GARCÍA-LÓPEZ R, CORNEJO-GRANADOS F, LOPEZ-ZAVALA AA, et al. OTUs and ASVs produce comparable taxonomic and diversity from shrimp microbiota 16S profiles using tailored abundance filters[J]. Genes (Basel), 2021, 12(4): 564.
[8] FUNG C, RUSLING M, LAMPETER T, et al.Automation of QIIME2 Metagenomic Analysis Platform[J]. Curr Protoc, 2021, 1(9): e254.
[9] BÉLANGER SA, CARON J. Evaluation of the child with global developmental delay and intellectual disability[J]. Paediatr Child Health, 2018, 23(6): 403-419.
[10] CHOO YY, AGARWAL P, HOW CH, et al.Developmental delay: identification and management at primary care level[J]. Singapore Med J, 2019, 60(3): 119-123.
[11] WOODS E, SPILLER M, BALASUBRAMANIAN M.Report of two children with global developmental delay in association with de novo TLK2 variant and literature review[J]. Am J Med Genet A, 2022, 188(3): 931-940.
[12] 缪婧, 包云光, 江米足. 肠道菌群与GH-IGF-1轴相关性研究进展[J]. 国际儿科学杂志, 2021, 48(11): 741-744.
[13] CHEN Y, FENG S, LI Y, et al.Gut microbiota and intestinal immunity-A crosstalk in irritable bowel syndrome[J]. Immunology, 2024, 172(1): 1-20.
[14] GÓRALCZYK-BIŃKOWSKA A, SZMAJDA-KRYGIER D, KOZŁOWSKA E. The microbiota-gut-brain axis in psychiatric disorders[J]. Int J Mol Sci, 2022, 23(19): 11245.
[15] 石丽云, 王爱萍. 生长激素与肠道菌群相关性研究进展[J]. 临床儿科杂志, 2022, 40(12): 955-959.
[16] 徐磊, 倪震, 张缨. 运动、肠道菌群代谢物——短链脂肪酸与骨骼肌代谢调控[J]. 中国生物化学与分子生物学报, 2022, 38(1): 1-7.
[17] JI P, WANG N, YU Y, et al.Single-cell delineation of the microbiota-gut-brain axis: Probiotic intervention in Chd8 haploinsufficient mice[J]. Cell Genom, 2025, 5(2): 100768.
[18] LAZAR L, ESHEL A, MOADI L, et al.Children with idiopathic short stature have significantly different gut microbiota than their normal height siblings: a case-control study[J]. Front Endocrinol (Lausanne), 2024, 15: 1343337.
[19] ZHUANG SQ, MAO YX, DENG FC, et al.[Comparative analysis of metagenomic and 16S rDNA sequencing in gut microbiota of healthy elderly][J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2022, 56(11): 1618-1624.
[20] 孙一凡, 谭亚芳, 潘志远, 等. 肠道微生物在炎症性肠病中的研究进展[J]. 中华炎性肠病杂志, 2023, 07(3): 292-296.
[21] BOGAERT D, VAN BEVEREN GJ, DE KOFF EM, et al. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites[J]. Cell Host Microbe, 2023, 31(3): 447-460. e446.
[22] 段昌海, 张翠景, 孙艺华, 等. 新型产甲烷古菌研究进展[J]. 微生物学报, 2019, 59(06): 981-995.
[23] 任师杰, 孔令豆, 刘骏, 等. 产甲烷古菌的分类及代谢途径研究进展[J]. 中国生物工程杂志, 2024, 44(09): 100-112.
[24] HIRONAGA M, YAMANE K, INABA M, et al.Characterization and antimicrobial susceptibility of Dysgonomonas capnocytophagoides isolated from human blood sample[J]. Jpn J Infect Dis, 2008, 61(3): 212-213.
[25] HUANG Y, YU Y, ZHAN S, et al.Dual oxidase Duox and Toll-like receptor 3 TLR3 in the Toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in Hermetia illucens L[J]. PLoS One, 2020, 15(4): e0225873.
[26] SCHALL SE, BLYTH DM, MCCARTHY SL.Dysgonomonas capnocytophagoides Bacteremia in a Patient With Stage IV Colon Adenocarcinoma[J]. Cureus, 2021, 13(7): e16381.
[27] CLARK A, MACH N.Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes[J]. J Int Soc Sports Nutr, 2016, 13: 43.
[28] QI X, YUN C, PANG Y, et al.The impact of the gut microbiota on the reproductive and metabolic endocrine system[J]. Gut Microbes, 2021, 13(1): 1-21.
[29] VALDES AM, WALTER J, SEGAL E, et al.Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361: k2179.
[30] CERDÓ T, RUIZ-RODRÍGUEZ A, ACUÑA I, et al. Infant gut microbiota contributes to cognitive performance in mice[J]. Cell Host Microbe, 2023, 31(12): 1974-1988. e4.
[31] ROBERTSON RC, MANGES AR, FINLAY BB, et al.The Human Microbiome and Child Growth - First 1000 Days and Beyond[J]. Trends Microbiol, 2019, 27(2): 131-147.
PDF(2940 KB)

Accesses

Citation

Detail

Sections
Recommended

/