Objective To investigate the target and potential mechanism of the action of Artemisia annua in the treatment of acute myocardial infarction (AMI) based on traditional Chinese medicine network pharmacology and in vitro experiments. Methods The chemical active ingredients and target genes of Artemisia annua were retrieved from TCMSP and Uniprot databases. We then searched for AMI-related genes using GeneCards, OMIM, TTD, PharmGKB, and DrugBank databases, screened out the common targets of Artemisia annua for the treatment of AMI, constructed a drug-disease-target network using Cytoscape 3.8.0 software, and constructed a protein-protein interaction(PPI) network using the String database. Core genes were screened out and analysed for GO functional enrichment and KEGG pathway enrichment. The effects of artemisinin (ART) on CoCl2-induced proliferation and apoptosis in H9C2 cells were assessed in in vitro studies. Results 20 active ingredients were obtained from Artemisia annua, including isorhamnetin, quercetin, artemisinin, and dihydroartemisinin.193 targets were obtained by removing duplicates.3278 targets were related to AMI, and 155 drug-disease co-targets were screened out, including TP53, AKT1, MAPK1, RELA, ESR1, and MAPK14. And the GO function enrichment analysis showed that the biological processes and function of Artemisia annua in the treatment of AMI were mainly focused on oxidative stress, inflammation, and xenograft rejection et al. KEGG pathway enrichment analysis showed that the treatment of AMI by Artemisia annua were mainly related to AGE-RAGE signaling pathway, TNF pathway, IL-17 pathway, PI3K-Akt pathway and apoptosis. ART promoted H9C2 cell proliferation and inhibited apoptosis and in vitro. Conclusion The study elucidated the potential targets of Artemisia annua L. and its active compound, artemisinin, in the treatment of AMI. It offers novel insights and methods for the application of traditional Chinese medicine in managing AMI.
Key words
artemisia annua /
myocardial infarction /
network pharmacology /
experimental validation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] BENJAMIN E J, VIRANI S S, CALLAWAY C W, et al.Heart disease and stroke statistics—2018 update: a report from the American Heart Association[J]. Circulation, 2018, 137(12): e67-e492.
[2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578.
[3] 中国急性心肌梗死注册登记研究组. 中国急性心肌梗死患者住院期间死亡的危险因素分析[J]. 中国循环杂志, 2020, 35(1): 24-30.
[4] 中国医师协会中西医结合医师分会, 中国中西医结合学会心血管病专业委员会, 中国中西医结合学会重症医学专业委员会, 等. 急性心肌梗死中西医结合诊疗指南[J]. 中国中西医结合杂志, 2018, 38(3): 272-284.
[5] 张敏州, 丁邦晗, 林谦. 急性心肌梗死中医临床诊疗指南[J]. 中华中医药杂志, 2021, 36(7): 4119-4127.
[6] 郭颖强, 薛瑞文, 吴维, 等. 冠心宁注射液后处理对心肌缺血再灌注损伤保护作用的临床研究[J]. 临床心血管病杂志, 2020, 36(2): 161-165.
[7] 王康, 常丽萍, 尹玉洁, 等. 基于脉络学说指导的急性心肌梗死后心肌纤维化中医病机及临床治疗探讨[J]. 中国实验方剂学杂志, 2021, 27(12): 189-195.
[8] 陈韦, 张明雪. 化瘀祛痰颗粒对急性心肌梗死PCI术后无复流患者心功能及心血管事件的影响[J]. 辽宁中医杂志, 2021, 48(8): 106-109.
[9] ZHAO TT, YANG TL, GONG L, et al.Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes[J]. Gene, 2018, 666: 92-99.
[10] 黄丽青. SIRT1信号通路介导异鼠李素抗心肌缺氧/复氧损伤机制研究[D]. 南昌: 南昌大学, 2016.
[11] ALBADRANI GM, BINMOWYNA MN, BIN-JUMAH MN, et al.Quercetin prevents myocardial infarction adverse remodeling in rats by attenuating TGF-β1/Smad3 signaling: different mechanisms of action[J]. Saudi J Biol Sci, 2021, 28(5): 2772-2782.
[12] 白楠, 詹成创, 王健, 等. 青蒿素及其衍生物在心血管疾病中的应用[J]. 国际心血管病杂志, 2021, 48(2): 94-97.
[13] GU Y, WU G, WANG X, et al.Artemisinin prevents electric remodeling following myocardial infarction possibly by upregulating the expression of connexin 43[J]. Mol Med Rep, 2014, 10(4): 1851-1856.
[14] 崔勤涛, 王学惠, 刘永强, 等. 双氢青蒿素通过抑制蛋白激酶B和NF-κB P65磷酸化减轻缺血再灌注导致的小鼠心肌损伤[J]. 中国药理学与毒理学杂志, 2021, 35(4): 259-264.
[15] 李耀征, 白保强, 孙亚勤, 等. 急性冠脉综合征患者术后血清TP53、miR-222-3p与预后的关系[J]. 中国循证心血管医学杂志, 2022, 14(5): 571-574.
[16] ZHENG S, GONG M, CHEN J.Extracellular vesicles enriched with miR-150 released by macrophages regulates the TP53-IGF-1 axis to alleviate myocardial infarction[J]. Am J Physiol Heart Circ Physiol, 2021, 320(3): H969-H979.
[17] MA L, KERR B, NAGA PRASAD SV, et al. Differential effects of Akt1 signaling on short-versus long-term consequences of myocardial infarction and reperfusion injury[J]. Lab Invest, 2014, 94(10)1083-1091.
[18] WANG J, WU ML, CAO SP, et al.Cycloastragenol ameliorates experimental heart damage in rats by promoting myocardial autophagy via inhibition of AKT1-RPS6KB1 signaling[J]. Biomed Pharmacother, 2018, 107: 1074-1081.
[19] 杨天睿, 叶堃, 苗云波, 等. MAPK信号通路及内质网应激对心肌缺血再灌注损伤的影响[J]. 昆明理工大学学报(自然科学版), 2022, 47(2): 83-88.
[20] 王治乾. miR-142-5p和miR-212-5p在心肌梗死小鼠心肌纤维化中的功能及其机制研究[D]. 石家庄: 河北医科大学, 2020.
[21] GARG S, MALHOTRA RK, KHAN SI, et al.Fisetin attenuates isoproterenol-induced cardiac ischemic injury in vivo by suppressing RAGE/NF-κB mediated oxidative stress, apoptosis and inflammation[J]. Phytomedicine, 2019, 56: 147-155.
[22] 王春苗, 王爱玲, 程景林, 等. TNF-α对骨髓间充质干细胞表达黏附分子及治疗心肌梗死的影响[J]. 安徽医科大学学报, 2014(7): 896-900.
[23] TROITSKAYA M, BAYSA A, VAAGE J, et al.Interleukin-17 (IL-17) expression is reduced during acute myocardial infarction: role on chemokine receptor expression in monocytes and their in vitro chemotaxis towards chemokines[J]. Toxins (Basel), 2012, 4(12): 1427-1439.
[24] 苏枫. PI3K/Akt信号介导缺血预适应在心肌梗死猪中抗心律失常及心功能修复作用[D]. 济南: 山东大学, 2015.