中国中老年人群代谢综合征识别模型:一项基于CHARLS数据库的研究

曾毅群, 李伟, 陈睿鹏, 梁成照, 梁艳芳, 刘崇梅

湖南师范大学学报医学版 ›› 2024, Vol. 21 ›› Issue (5) : 143-150.

PDF(2484 KB)
PDF(2484 KB)
湖南师范大学学报医学版 ›› 2024, Vol. 21 ›› Issue (5) : 143-150.
预防医学

中国中老年人群代谢综合征识别模型:一项基于CHARLS数据库的研究

  • 曾毅群1, 李伟1, 陈睿鹏1, 梁成照2, 梁艳芳1, 刘崇梅1
作者信息 +

China’s elderly population identification model of metabolic syndrome-a study based on CHARLS database

  • ZENG Yiqun, LI Wei, CHEN Ruipeng, LIANG Chenzhao, LIANG Yanfang, LIU Chongmei
Author information +
文章历史 +

摘要

目的: 代谢综合征(metabolic syndrome,MetS)发病率逐年升高,正威胁着全球人类健康,本研究旨在构建简易高效的代谢综合征识别模型。方法: 本研究采用中国健康与养老追踪调查数据库中45岁以上的中老年人群的人体测量学资料(2011年),最终纳入7552例受试者,按照7∶3的比例随机分割为模型训练集与模型验证集,采用多因素逐步Logistic回归分析构建MetS识别模型并构建列线图,通过ROC曲线下面积评估列线图的筛查性能,应用决策曲线分析计算模型的净效益。结果: 我国45岁以上中老年人群MetS的患病率经年龄标化后为42.22%。模型显示,女性、高血脂、糖尿病、吸烟、高收缩压、快脉搏、宽腰围、高BMI为MetS的危险因素。本模型C指数为0.864。列线图最佳阈值概率为0.407。训练集ROC曲线的AUC为0.864(0.854~0.874),验证集ROC曲线的AUC为0.857(0.842~0.873)。当将阈值概率设置为0.407时,该模型的灵敏度为80%(95%CI:78.35%~81.67%),特异度为78%(95%CI:76.57%~79.51%)。决策曲线分析显示,采用本模型进行MetS筛查时可使33人/每百人免除不必要的MetS确诊试验。结论: 目前我国中老年人群中代谢综合征患病率较高,本研究构建的识别模型有助于中国45岁以上人群MetS患者的早期筛查。

Abstract

Objective The incidence of Metabolic syndrome (MetS) is increasing year by year, which is threatening human health worldwide. The aim of this study is to construct a simple and efficient metabolic syndrome identification model. Methods This study used anthropometric data from the China Health and Retirement Longitudinal Survey (2011). A total of 7552 subjects aged 45 years and over were included and randomly divided into training set and validation set according to the ratio of 7∶3. Multivariate stepwise logistic regression analysis was used to construct a MetS identification model and a nomogram. The screening performance of the nomogram was evaluated by the area under the ROC curve, and the net benefit of the model was calculated by decision curve analysis. Results The age-standardized prevalence of MetS was 42.22% among Chinese middle-aged and elderly people over 45 years old. The model showed that female, hyperlipidemia, diabetes, smoking, high systolic blood pressure, fast pulse, wide waist circumference, and high BMI were risk factors for MetS. The C-index of the model was 0.864. The optimal threshold probability of the nomogram was 0.407. The AUC of ROC curve in training set was 0.864(0.854-0.874), and the AUC of ROC curve in validation set was 0.857(0.842-0.873). When the threshold probability was set to 0.407, the sensitivity of the model was 80% (95%CI: 78.35%-81.67%), and the specificity was 78% (95%CI: 76.57%-79.51%). Decision curve analysis showed that 33 persons per 100 persons could be exempted from unnecessary MetS confirmatory tests when MetS screening was performed by using this model. Conclusion The prevalence of MetS is high in middle-aged and elderly people in China. The identification model constructed in this study is helpful for the early screening of mets in Chinese people over 45 years old.

关键词

代谢综合征 / 危险因素 / 识别模型 / 列线图 / 决策曲线

Key words

the metabolic syndrome / risk factors / model of identification / nomogram / decision curve

引用本文

导出引用
曾毅群, 李伟, 陈睿鹏, 梁成照, 梁艳芳, 刘崇梅. 中国中老年人群代谢综合征识别模型:一项基于CHARLS数据库的研究[J]. 湖南师范大学学报医学版. 2024, 21(5): 143-150
ZENG Yiqun, LI Wei, CHEN Ruipeng, LIANG Chenzhao, LIANG Yanfang, LIU Chongmei. China’s elderly population identification model of metabolic syndrome-a study based on CHARLS database[J]. Journal of Hunan Normal University(Medical Science). 2024, 21(5): 143-150
中图分类号: R734.2   

参考文献

[1] SAKLAYEN M G.The Global Epidemic of the Metabolic Syndrome[J]. Curr Hypertens Rep, 2018, 20(2): 12.
[2] WANG M, WANG C, ZHAO M, et al.BMI-based metabolic syndrome severity score and arterial stiffness in a cohort Chinese study[J]. Nutr Metab Cardiovasc Dis: NMCD, 2024, 34(7): 1761-1768.
[3] FAHED G, AOUN L, BOU ZERDAN M, et al.Metabolic Syndrome: Updates on Pathophysiology and Management in 2021[J]. Int J Mol Sci, 2022, 23(2): 786.
[4] YAO F, BO Y, ZHAO L, et al.Prevalence and Influencing Factors of Metabolic Syndrome among Adults in China from 2015 to 2017[J]. Nutrients, 2021, 13(12): 4475.
[5] RUS M, CRISAN S, ANDRONIE-CIOARA F L, et al. Prevalence and Risk Factors of Metabolic Syndrome: A Prospective Study on Cardiovascular Health[J]. Medicina (Kaunas, Lithuania), 2023, 59(10): 1711.
[6] VICKERS A J, ELKIN E B.Decision curve analysis: a novel method for evaluating prediction models[J]. Medical decision making: an international journal of the Society for Medical Decision Making, 2006, 26(6): 565-574.
[7] PEIRCE C S. The numerical measure of the success of predictions[J]. Science (New York, NY), 1884, 4(93): 453-454.
[8] HIRODE G, WONG R J.Trends in the Prevalence of Metabolic Syndrome in the United States, 2011-2016[J]. JAMA, 2020, 323(24): 2526-2528.
[9] DELAVARI A, FOROUZANFAR M H, ALIKHANI S, et al.First nationwide study of the prevalence of the metabolic syndrome and optimal cutoff points of waist circumference in the Middle East: the national survey of risk factors for noncommunicable diseases of Iran[J]. Diabetes care, 2009, 32(6): 1092-1097.
[10] GUTIERREZ-ESPARZA G O, RAMIREZ-DELREAL T A, MARTINEZ-GARCIA M, et al. Machine and Deep Learning Applied to Predict Metabolic Syndrome without a Blood Screening[J]. APPLIED SCIENCES-BASEL, 2021, 11(10): 11104334.
[11] LIU X, LUO X, LIU Y, et al.Resting heart rate and risk of metabolic syndrome in adults: a dose-response meta-analysis of observational studies[J]. Acta diabetologica, 2017, 54(3): 223-235.
[12] XU Q, WANG L, MING J, et al.Using noninvasive anthropometric indices to develop and validate a predictive model for metabolic syndrome in Chinese adults: a nationwide study[J]. BMC endocrine disorders, 2022, 22(1): 53.
[13] KIM J, MUN S, LEE S, et al.Prediction of metabolic and pre-metabolic syndromes using machine learning models with anthropometric, lifestyle, and biochemical factors from a middle-aged population in Korea[J]. BMC public health, 2022, 22(1): 664.
[14] WANG F H, LIN C M.The Utility of Artificial Neural Networks for the Non-Invasive Prediction of Metabolic Syndrome Based on Personal Characteristics[J]. International journal of environmental research and public health, 2020, 17(24): 9288.
[15] EYVAZLOU M, HOSSEINPOURI M, MOKARAMI H, et al.Prediction of metabolic syndrome based on sleep and work-related risk factors using an artificial neural network[J]. BMC endocrine disorders, 2020, 20(1): 169.
[16] DUAN J, WANG Y, CHEN L, et al.Employing broad learning and non-invasive risk factor to improve the early diagnosis of metabolic syndrome[J]. iScience, 2024, 27(1): 108644.
[17] MOHSENI-TAKALLOO S, MOZAFFARI-KHOSRAVI H, MOHSENI H, et al.Metabolic syndrome prediction using non-invasive and dietary parameters based on a support vector machine[J]. Nutrition, metabolism, and cardiovascular diseases: NMCD, 2024, 34(1): 126-135.
[18] ROMERO-SALDAñA M, TAULER P, VAQUERO-ABELLáN M, et al. Validation of a non-invasive method for the early detection of metabolic syndrome: a diagnostic accuracy test in a working population[J]. BMJ open, 2018, 8(10): e020476.
[19] ROMERO-SALDAñA M, FUENTES-JIMéNEZ F J, VAQUERO-ABELLáN M, et al. New non-invasive method for early detection of metabolic syndrome in the working population[J]. European journal of cardiovascular nursing, 2016, 15(7): 549-558.
[20] HSIUNG D Y, LIU C W, CHENG P C, et al.Using non-invasive assessment methods to predict the risk of metabolic syndrome[J]. Applied nursing research: ANR, 2015, 28(2): 72-77.
[21] DE KROON M L, RENDERS C M, KUIPERS E C, et al. Identifying metabolic syndrome without blood tests in young adults--the Terneuzen Birth Cohort[J]. European journal of public health, 2008, 18(6): 656-660.
[22] SHIN H, SHIM S, OH S.Machine learning-based predictive model for prevention of metabolic syndrome[J]. PloS one, 2023, 18(6): e0286635.
[23] CHEN Y, XU W, ZHANG W, et al.Plasma metabolic fingerprints for large-scale screening and personalized risk stratification of metabolic syndrome[J]. Cell reports Medicine, 2023, 4(7): 101109.
[24] BOUILLON-MINOIS J B, DUTHEIL F. Biomarker of Stress, Metabolic Syndrome and Human Health[J]. Nutrients, 2022, 14(14): 2935.
[25] ALKHULAIFI F, DARKOH C. Meal Timing, Meal Frequency and Metabolic Syndrome[J]. Nutrients, 2022, 14(9): 14091719.
[26] CHASENS E R, IMES C C, KARIUKI J K, et al.Sleep and Metabolic Syndrome[J]. The Nursing clinics of North America, 2021, 56(2): 203-217.

基金

安徽省重点研究与开发计划“代谢综合征患者的识别与2年列队研究”(202004j07020026)

PDF(2484 KB)

Accesses

Citation

Detail

段落导航
相关文章

/