目的: 探究儿童重症支原体肺炎(mycoplasma pneumonia,MPP)早期筛查情况并构建预后预测列线图(nomogam)模型。方法: 选取成都市第七人民医院、攀枝花市中心医院、温江区妇幼保健院2022年12月―2024年1月收治的400例重症MPP患儿,将患者按照7∶3比例(随机数字表法)随机分为建模组(280例)与验证组(120例)。根据患儿预后情况将建模组分为预后良好组和预后不良组。儿童重症MPP预后不良的影响因素采用多因素Logistic回归分析;采用R软件构建Nomogam模型。绘制ROC曲线评估Nomogam模型的区分度;通过校准曲线来评价模型的一致性;使用临床决策曲线(DCA)对该模型的临床应用价值进行评估。结果: 280例患儿有79例发生预后不良,发生率为28.21%。两组年龄、降钙素原(PCT)、白细胞介素-6(IL-6)、中性粒细胞与淋巴细胞比值(NLR)、乳酸脱氢酶(LDH)、C反应蛋白(CRP)和免疫球蛋白M(IgM)比较有差异。多因素Logistic回归分析年龄、PCT、IL-6、NLR、LDH、CRP和IgM是儿童重症MPP预后不良的危险因素。建模组和验证组AUC为0.974和0.967,校准曲线斜率与1接近,H-L检验为χ2=7.021/6.984,P=0.742/0.698,一致性良好。DCA曲线可知,高风险阈值概率在0.03~0.91时,该模型预测儿童重症MPP预后不良的临床使用价值较高。结论: 年龄、PCT、IL-6、NLR、LDH、CRP和IgM是儿童重症MPP预后不良的影响因素,以此构建的列线图模型区分度与一致性良好,可早期筛查儿童重症MPP预后不良发生的风险。
Abstract
Objective To construct a Nomogam model for predicting prognosis based on multicenter data from early screening of severe mycoplasma pneumoniae pneumonia (MPP) in children. Methods A total of 400 children with severe MPP admitted to Chengdu Seventh People's Hospital, Panzhihua Central Hospital, and Wenjiang Maternal and Child Health Hospital from December 2022 to January 2024 were gathered. Patients were randomly grouped into a modeling group (280 cases) and a validation group (120 cases) in a 7∶3 ratio (random number table method). According to the prognosis of the patients, the modeling group was separated into a good prognosis group and a poor prognosis group. The influencing factors for poor prognosis of severe MPP in children were analyzed using multiple logistic regression analysis. R software was applied to build the Nomogam model. ROC curve was plotted to evaluate the discrimination of the Nomogam model. Model consistency was applied to draw calibration curves for evaluation. Decision Curve Analysis (DCA) was applied to evaluate the clinical application value of the model. Results Out of 280 children, 79 had poor prognosis, with an incidence rate of 28.21%. There were differences in age, PCT, IL-6, NLR, LDH, CRP, and IgM between the two groups. Multivariate logistic regression analysis showed that age, PCT, IL-6, NLR, LDH, CRP, and IgM were risk factors for poor prognosis of severe MPP in children. The AUC of the modeling group and validation group was 0.974 and 0.967, and the slope of the calibration curve was close to 1, the H-L test showed χ2=7.021 and 6.984, P=0.742 and 0.698, indicating good consistency. DCA curve showed that when the probability of high-risk threshold was between 0.03 and 0.91, the model had high clinical value in predicting poor prognosis of severe MPP in children. Conclusion Age, PCT, IL-6, NLR, LDH, CRP, and IgM are factors influencing poor prognosis in children with severe MPP, and the column-line diagram model constructed in this way has good discrimination and consistency, and can be used to screen the risk of poor prognosis in children with severe MPP at an early stage.
关键词
重症支原体肺炎 /
预后 /
列线图
Key words
severe mycoplasma pneumonia /
prognosis /
nomogam
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHOO S, LEE YY, LEE E.Clinical significance of respiratory virus coinfection in children with Mycoplasma pneumoniae pneumonia[J]. BMC Pulm Med, 2022, 22(1): 212-216.
[2] 杨颖, 刘亚昆, 董天津. 肺炎支原体肺炎患儿血清可溶性细胞间黏附分子-1、CD40配体表达及其预后相关性研究[J]. 中国中西医结合儿科学, 2021, 13(6): 488-492.
[3] 高花, 田建梅. 儿童重症肺炎支原体肺炎相关高危因素Logistic回归分析[J]. 内蒙古医科大学学报, 2023, 45(1): 130-133.
[4] GONG H, SUN B, CHEN Y, et al.The risk factors of children acquiring refractory mycoplasma pneumoniae pneumonia: A meta-analysis[J]. Medicine (Baltimore), 2021, 100(11): e24894.
[5] LI M, WEI X, ZHANG SS, et al.Recognition of refractory Mycoplasma pneumoniae pneumonia among Myocoplasma pneumoniae pneumonia in hospitalized children: development and validation of a predictive nomogram model[J]. BMC Pulm Med, 2023, 23(1): 383-386.
[6] ZHANG X, SUN R, JIA W, et al.A new dynamic nomogram for predicting the risk of severe Mycoplasma pneumoniae pneumonia in children[J]. Sci Rep, 2024, 14(1): 8260-8267.
[7] 江载芳, 中昆玲, 沈颖. 诸福棠实用儿科学[M].8版. 北京: 人民卫生出版社, 2015: 1280-1282.
[8] 中华医学会儿科学分会呼吸学组, 《中华儿科杂志》编辑委员会. 儿童社区获得性肺炎管理指南 (2013修订) (上)[J]. 中华儿科杂志, 2013, 51(10): 745-752.
[9] 中国医师协会急诊医师分会. 中国急诊重症肺炎临床实践专家共识[J]. 中国急救医学, 2016, 36(2): 97-107.
[10] PENG Y, CHEN Z, LI Y, et al.Shuanghuanglian oral preparations combined with azithromycin for treatment of Mycoplasma pneumoniae pneumonia in Asian children: A systematic review and meta-analysis of randomized controlled trials[J]. PLoS One, 2021, 16(7): e0254405.
[11] KUMAR S, GARG IB, SETHI GR.Serological and molecular detection of Mycoplasma pneumoniae in children with community-acquired lower respiratory tract infections[J]. Diagn Microbiol Infect Dis, 2019, 95(1): 5-9.
[12] LEE K L, LEE C M, YANG T L, et al.Severe Mycoplasma pneumoniae pneumonia requiring intensive care in children, 2010-2019[J]. J Formos Med Assoc, 2021, 120(1): 281-291.
[13] TSAI TA, TSAI CK, KUO KC, et al.Rational stepwise approach for Mycoplasma pneumoniae pneumonia in children[J]. J Microbiol Immunol Infect, 202, 54(4): 557-565.
[14] 卢红霞, 黄晗, 梁利红, 等. 儿童难治性肺炎支原体肺炎医院感染病原体特点及危险因素分析[J]. 临床研究, 2020, 28(1): 11-13.
[15] FAN F, LV J, YANG Q, et al.Clinical characteristics and serum inflammatory markers of community-acquired mycoplasma pneumonia in children[J]. Clin Respir J, 2023, 17(7): 607-617.
[16] WANG H, ZHANG Y, ZHAO C, et al.Serum IL-17A and IL-6 in paediatric Mycoplasma pneumoniae pneumonia: implications for different endotypes[J]. Emerg Microbes Infect, 2024, 13(1): 2324078-2324084.
[17] ZAHOREC R.Neutrophil-to-lymphocyte ratio, past, present and future perspectives[J]. Bratisl Lek Listy, 2021, 122(7): 474-488.
[18] LUO Y, WANG Y.Risk Prediction Model for Necrotizing Pneumonia in Children with Mycoplasma pneumoniae Pneumonia[J]. J Inflamm Res, 2023, 16(1): 2079-2087.
[19] 康娅楠, 李秀辉, 弓培慧, 等. 儿童支原体肺炎重症肺炎影响因素分析及列线图模型构建[J]. 医学研究杂志, 2023, 52(11): 69-73.
[20] 袁静, 陈庆仪, 杨好贤, 等. 含凝血功能五项Nomogram预测模型预测重症肺炎支原体肺炎患儿预后的效果研究[J]. 临床误诊误治, 2023, 36(3): 90-94.
基金
2023年度成都医学院-成都市第七人民医院联合科研基金项目“基于前瞻性的多中心调研建立儿童重症支原体肺炎的早期筛查和预后预测模型”(23LHQYZ-03)