目的: 本研究旨在通过网络药理学和机器学习方法,探讨雷公藤多苷联合甲氨蝶呤治疗类风湿性关节炎的潜在机制,旨在揭示其协同作用及分子基础。方法: 本研究利用CTD数据库(http://ctdbase.org/)检索甲氨蝶呤和雷公藤多苷的主要成分,识别相关靶基因。随后,通过分析GEO数据库(https://www.ncbi.nlm.nih.gov/geo/)中的类风湿性关节炎数据集,确定差异表达基因,并通过韦恩图识别药物与疾病的共享基因。利用机器学习算法筛选核心共享基因,并通过临床样本验证其作用。该方法结合网络药理学与机器学习,提供了系统的分析框架。结果: 通过系统性分析和机器学习方法,我们确定了IGFBP4和CASP7是雷公藤多苷联合甲氨蝶呤治疗类风湿性关节炎的潜在靶点。临床实验显示,治疗24周后,患者IGFBP4上调和CASP7下调的失调状态得到改善,且DS28指数显著下降。这表明,雷公藤多苷联合甲氨蝶呤可能通过调控IGFBP4和CASP7的表达,降低类风湿性关节炎的严重程度。结论: 本研究通过系统性分析和机器学习揭示了雷公藤多苷和甲氨蝶呤在类风湿性关节炎治疗中的分子机制,并确定了新的潜在治疗靶点,为个体化治疗策略提供了科学依据,具有重要的临床应用价值。
Abstract
Objective This study aims to explore how Tripterygium glycosides and methotrexate work together to treat rheumatoid arthritis using network pharmacology and machine learning, focusing on their synergistic effects and underlying molecular mechanisms. Methods This study used the CTD database to identify target genes of methotrexate and triptolide, and analyzed rheumatoid arthritis datasets from the GEO database to find differentially expressed genes. Shared genes between the drugs and the disease were identified using Venn diagrams. Machine learning algorithms screened core shared genes, which were then validated with clinical samples. This approach integrates network pharmacology with machine learning. Results Using systematic analysis and machine learning, we've identified IGFBP4 and CASP7 as potential targets for rheumatoid arthritis treatment with tripterygium glycosides and methotrexate. Clinical trials show that after 24 weeks, the dysregulated IGFBP4 and CASP7 levels improve, and the DAS28 score significantly decreases, suggesting that this combination therapy may alleviate rheumatoid arthritis by regulating these proteins. Conclusion This study uses systematic analysis and machine learning to uncover the molecular mechanisms of tripterygium glycosides and methotrexate in treating rheumatoid arthritis, identifying new therapeutic targets. It offers a scientific basis for personalized treatments with significant clinical value.
关键词
类风湿性关节炎 /
雷公藤多苷 /
甲胺蝶呤 /
网络药理学 /
机器学习
Key words
rheumatoid arthritis /
triptolide /
methotrexate /
network pharmacology /
machine learning
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 崔东晓, 乐世俊, 徐顶巧, 等. 雷公藤多苷及其主要活性成分抑制类风湿性关节炎的作用机制研究进展[J]. 中草药, 2023, 54(20): 6913-6921.
[2] ZHAO Z, HUA Z, LUO X, et al.Application and pharmacological mechanism of methotrexate in rheumatoid arthritis[J]. Biomed Pharmacother, 2022, 150(6): 113074.
[3] WANG W, ZHOU H, LIU L.Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review[J]. Eur J Med Chem, 2018, 158(5): 502-516.
[4] 吴佳, 梁翼, 李敏, 等. 艾拉莫德联合甲氨蝶呤、雷公藤多苷对类风湿关节炎关节软骨细胞损伤的修复作用及安全性分析[J]. 安徽医药, 2022, 26(1): 183-187.
[5] 谷敬欣, 赵振军, 左惠芬, 等. 雷公藤多苷片联合甲氨蝶呤对类风湿关节炎合并骨质疏松患者血清骨代谢标志物水平及炎症因子的影响[J]. 现代中西医结合杂志, 2020, 29(22): 2424-2428.
[6] 宫贺, 罗嘉仪, 高雪, 等. 雷公藤多苷片生物碱类成分抗肝癌作用网络药理学探讨及诱导肝癌细胞毒性验证[J]. 药物评价研究, 2024, 47(1): 17-25.
[7] 张穿洋, 朱文莉, 李晓冉, 等. 急性脑卒中预后预测模型: 机器学习与传统回归模型的比较[J]. 中国CT和MRI杂志, 2023, 21(7): 24-26.
[8] HAN Y, LU X, LAI W, et al.Identification of serological biomarkers for diagnosis of rheumatoid arthritis using a protein array-based approach[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2022, 42(5): 733-739.
[9] 丁娟, 莫基浩. 胰岛素样生长因子Ⅱ及胰岛素样生长因子结合蛋白-6血清水平与类风湿关节炎疾病活动度的关系研究[J]. 中医正骨, 2023, 35(11): 10-13.
[10] 王世海, 武晔, 王恒俊, 等. 骨关节炎患者滑膜组织中胰岛素样生长因子结合蛋白2、表皮生长因子受体表达及临床意义[J]. 中国中医骨伤科杂志, 2022, 30(5): 28-33.
[11] ZHAO J, SU Y, JIAO J, et al.Identification of lncRNA and mRNA Biomarkers in Osteoarthritic Degenerative Meniscus by Weighted Gene Coexpression Network and Competing Endogenous RNA Network Analysis[J]. Biomed Res Int, 2020, 2020: 2123787.
[12] CASSAUNDRA A. WHITE, JAMES DENVIR, MARIA A. SERRAT. Differential regulation of IGF‐1 pathway and accelerated bone elongation in pre‐obese juvenile mice[J]. Faseb Journal, 2022, 36. s1. r4490.
[13] LIU H, TANG T.A bioinformatic study of IGFBPs in glioma regarding their diagnostic, prognostic, and therapeutic prediction value[J]. Am J Transl Res, 2023, 15(3): 2140-2155.
[14] ZERROUK N, ALCRAFT R, HALL BA, et al.Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis[J]. NPJ Syst Biol Appl, 2024, 10(1): 10.
[15] SAFDAR M, ZAHEER S, KHAILANY RA, et al.The Relevance of SNPs at 3’UTR Region of CASP7 and miR-371b-5p Associated Diseases: A Computational Analysis[J]. Cell Biochem Biophys, 2020, 78(4): 541-557.
[16] WANG M, TAN J, JIANG C, et al.Inorganic arsenic influences cell apoptosis by regulating the expression of MEG3 gene[J]. Environ Geochem Health, 2021, 43(1): 475-484.
[17] CANIVE M, BADIA-BRINGUÉ G, VÁZQUEZ P, et al. A Genome-Wide Association Study for Tolerance to Paratuberculosis Identifies Candidate Genes Involved in DNA Packaging, DNA Damage Repair, Innate Immunity, and Pathogen Persistence[J]. Front Immunol, 2022, 13(6): 820965.