线粒体基因组突变导致的线粒体疾病治疗方法研究进展

杨振, 任凯群, 谷峰

湖南师范大学学报医学版 ›› 2023, Vol. 20 ›› Issue (5) : 1-7.

PDF(2582 KB)
PDF(2582 KB)
湖南师范大学学报医学版 ›› 2023, Vol. 20 ›› Issue (5) : 1-7.
特邀综述

线粒体基因组突变导致的线粒体疾病治疗方法研究进展

  • 杨振1, 任凯群1, 谷峰1,2
作者信息 +

Progress of therapy for mitochondrial diseases caused by mitochondrial genome mutations

  • YANG Zhen1, RENG Kaiqun1, GU Feng1,2
Author information +
文章历史 +

摘要

线粒体疾病是指由线粒体DNA(mtDNA)或核DNA(nDNA)突变引起线粒体代谢酶的功能缺陷导致三磷酸腺苷(ATP)合成障碍、能量产生不足而出现的一组多系统疾病,可单独或同时累及神经、肌肉、眼、耳、消化、内分泌、心血管、肾脏及血液系统等。mtDNA的遗传特性是非常复杂的,因为每个细胞中都会有多个mtDNA的拷贝,mtDNA的突变可以是同质的(基本上所有的mtDNA都是突变型),也可以是异质的(混合了突变和野生型的mtDNA),只有当突变型mtDNA所占比例达到临界阈值时才会出现功能障碍。线粒体疾病不仅可以发生在任何年龄段,而且可以在任何器官系统中引起症状 。因此,探索相关的临床治疗方法具有重大意义。新一代生物技术催生了针对线粒体基因组突变导致的线粒体疾病的治疗思路和方法,本文总结了处于研究阶段的相关的探索性研究工作,并提出了相关的治疗瓶颈问题,为研发线粒体疾病治疗新方法提供参考。

Abstract

Mitochondrial diseases refer to a group of multi-system diseases caused by mitochondrial DNA(mtDNA)or nuclear DNA(nDNA)mutations that cause functional defects of mitochondrial metabolic enzymes,leading to adenosine triphosphate(ATP)synthesis disorders and insufficient energy production. It can involve nerves,muscles,eyes,ears,digestion,endocrine,cardiovascular,kidney and blood system alone or simultaneously. The genetic properties of mtDNA are very complex because there are multiple copies of mtDNA in each cell,and mtDNA mutations can be homogeneous(basically all mtDNA is a mutant)or heterogeneous(a mixture of mutated and wild-type mtDNA). Dysfunction occurs only when the proportion of mutant mtDNA reaches a critical threshold. Not only can mitochondrial diseases occur at any age,but they can cause symptoms in any organ system. Therefore,it is of great significance to study gene therapy for mitochondrial diseases. The new generation of biotechnology has given birth to the treatment ideas and methods for mitochondrial diseases caused by mitochondrial genome mutations. In the present paper,we summarize the clinical application and the related exploratory research work in the research stage and highlight the bottlenecks for the treatments. It may pave a way for the development of novel therapeutic methods for mitochondrial diseases.

关键词

线粒体疾病 / 基因编辑 / 基因治疗

Key words

mitochondrial diseases / gene editing / gene therapy

引用本文

导出引用
杨振, 任凯群, 谷峰. 线粒体基因组突变导致的线粒体疾病治疗方法研究进展[J]. 湖南师范大学学报医学版. 2023, 20(5): 1-7
YANG Zhen, RENG Kaiqun, GU Feng. Progress of therapy for mitochondrial diseases caused by mitochondrial genome mutations[J]. Journal of Hunan Normal University(Medical Science). 2023, 20(5): 1-7
中图分类号: Q78   

参考文献

[1] Obrador E,Salvador-Palmer R,López-Blanch R,et al.The Link between Oxidative Stress,Redox Status,Bioenergetics and Mitochondria in the Pathophysiology of ALS[J]. Int J Mol Sci,2021,22(12):6352.
[2] Nunnari J,Suomalainen A.Mitochondria:in sickness and in health[J]. Cell,2012,148(6):1145-1159.
[3] Picard M,McEwen BS. Psychological Stress and Mitochondria:A Conceptual Framework[J]. Psychosom Med,2018,80(2):126-140.
[4] Johnston IG,Williams BP.Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention[J]. Cell Syst,2016,2(2):101-111.
[5] Reznik E,Miller ML,Şenbabaoğlu Y,et al.Mitochondrial DNA copy number variation across human cancers[J]. Elife,2016,5:e10769.
[6] Anderson S,Bankier AT,Barrell BG,et al.Sequence and organization of the human mitochondrial genome[J]. Nature,1981,290(5806):457-465.
[7] Saki M,Prakash A.DNA damage related crosstalk between the nucleus and mitochondria[J]. Free Radic Biol Med,2017,107:216-227.
[8] Rossignol R,Faustin B,Rocher C,et al.Mitochondrial threshold effects[J]. Biochem J,2003,370(Pt 3):751-762.
[9] Schaefer AM,Taylor RW,Turnbull DM,et al.The epidemiology of mitochondrial disorders--past,present and future[J]. Biochim Biophys Acta,2004,1659(2-3):115-120.
[10] Sheng N,Zhang Z,Zheng H,et al.Scutellarin Rescued Mitochondrial Damage through Ameliorating Mitochondrial Glucose Oxidation via the Pdk‐Pdc Axis[J]. Adv Sci(Weinh),2023,10(32): e2303584.
[11] Adashi EY,Rubenstein DS,Mossman JA,et al.Mitochondrial disease:Replace or edit?[J]. Science,2021,373(6560):1200-1201.
[12] Zhang J,Liu H,Luo S,et al.Live birth derived from oocyte spindle transfer to prevent mitochondrial disease[J]. Reprod Biomed Online,2017,34(4):361-368.
[13] Fan XY,Guo L,Chen LN,et al.Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy[J]. Nat Biomed Eng,2022,6(4):339-350.
[14] Sharma H,Singh D,Mahant A,et al.Development of mitochondrial replacement therapy:A review[J]. Heliyon,2020,6(9):e04643.
[15] Reddy P,Ocampo A,Suzuki K,et al.Selective elimination of mitochondrial mutations in the germline by genome editing[J]. Cell,2015,161(3):459-469.
[16] Bacman SR,Kauppila JHK,Pereira CV,et al.MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala)levels in a mouse model of heteroplasmic mtDNA mutation[J]. Nat Med,2018,24(11):1696-1700.
[17] Komor AC,Kim YB,Packer MS,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature,2016,533(7603):420-424.
[18] Gammage PA,Moraes CT,Minczuk M.Mitochondrial Genome Engineering:The Revolution May Not Be CRISPR-Ized[J]. Trends Genet,2018,34(2):101-110.
[19] Wang G,Chen HW,Oktay Y,et al.PNPASE regulates RNA import into mitochondria[J]. Cell,2010,142(3):456-467.
[20] Hussain SA,Yalvac ME,Khoo B,et al.Adapting CRISPR/Cas9 System for Targeting Mitochondrial Genome[J]. Front Genet,2021,12:627050.
[21] Wang B,Lv X,Wang Y,et al.CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome[J]. Sci China Life Sci,2021,64(9):1463-1472.
[22] Mok BY,De Moraes MH,Zeng J,et al.A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing[J]. Nature,2020,583(7817):631-637.
[23] Mok BY,Kotrys AV,Raguram A,et al.CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA[J]. Nat Biotechnol,2022,40(9):1378-1387.
[24] Mi L,Shi M,Li YX,et al.DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing[J]. Nat Commun,2023,14(1):874.
[25] Guo J,Yu W,Li M,et al. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility [J]. Mol Cell,2023,83(10):1710-1724. e7.
[26] Cho SI,Lee S,Mok YG,et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases [J]. Cell,2022,185(10):1764-1776. e12.
[27] Mok YG,Hong S,Bae SJ,et al.Targeted A-to-G base editing of chloroplast DNA in plants[J]. Nat Plants,2022,8(12):1378-1384.
[28] Huang J,Lin Q,Fei H,et al. Discovery of deaminase functions by structure-based protein clustering [J]. Cell,2023,186(15):3182-3195. e14.
[29] Lei Z,Meng H,Liu L,et al.Mitochondrial base editor induces substantial nuclear off-target mutations[J]. Nature,2022,606(7915):804-811.
[30] Wei Y,Li Z,Xu K,et al.Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos[J]. Cell Discov,2022,8(1):27.
[31] Lee S,Lee H,Baek G,et al.Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors[J]. Nat Biotechnol,2023,41(3):378-386.
[32] Bi C,Wang L,Fan Y,et al.Single-cell individual full-length mtDNA sequencing by iMiGseq uncovers unexpected heteroplasmy shifts in mtDNA editing[J]. Nucleic Acids Res,2023,51(8):e48.
[33] Bi C,Wang L,Fan Y,et al.Quantitative haplotype-resolved analysis of mitochondrial DNA heteroplasmy in Human single oocytes,blastoids,and pluripotent stem cells[J]. Nucleic Acids Res,2023,51(8):3793-3805.
[34] Mok YG,Lee JM,Chung E,et al.Base editing in human cells with monomeric DddA-TALE fusion deaminases[J]. Nat Commun,2022,13(1):4038.
[35] Wei Y,Xu C,Feng H,et al.Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE[J]. Cell Discov,2022,8(1):7.
[36] Chen X,Liang D,Guo J,et al.DdCBE-mediated mitochondrial base editing in human 3PN embryos[J]. Cell Discov,2022,8(1):8.
[37] Guo J,Zhang X,Chen X,et al.Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing[J]. Cell Discov,2021,7(1):78.
[38] Silva-Pinheiro P,Nash PA,Van Haute L,et al.In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue[J]. Nat Commun,2022,13(1):750.
[39] Qi X,Tan L,Zhang X,et al.Expanding DdCBE-mediated targeting scope to aC motif preference in rat[J]. Mol Ther Nucleic Acids,2023,32:1-12.
[40] Tan L,Qi X,Kong W,et al. A conditional knockout rat resource of mitochondrial protein-coding genes via a DdCBE-induced premature stop codon [J]. Sci Adv,2023,9(15):eadf2695.
[41] Yi Z,Zhang X,Tang W,et al. Strand-selective base editing of human mitochondrial DNA using mitoBEs [J]. Nat Biotechnol,2023,Online ahead of print.
[42] Hu J,Sun Y,Li B,et al. Strand-preferred base editing of organellar and nuclear genomes using CyDENT [J]. Nat Biotechnol,2023,Online ahead of print.

基金

国家自然科学基金项目(82271910)

PDF(2582 KB)

Accesses

Citation

Detail

段落导航
相关文章

/