基于机器学习的强直性脊柱炎免疫相关基因鉴定

周若舟, 胡昕, 范瑜, 房佐忠, 田健, 邓国兵

湖南师范大学学报医学版 ›› 2023, Vol. 20 ›› Issue (2) : 54-62.

PDF(3308 KB)
PDF(3308 KB)
湖南师范大学学报医学版 ›› 2023, Vol. 20 ›› Issue (2) : 54-62.
临床医学

基于机器学习的强直性脊柱炎免疫相关基因鉴定

  • 周若舟1, 胡昕1, 范瑜1, 房佐忠1, 田健2, 邓国兵1
作者信息 +

Identification of immune related genes in ankylosing spondylitis based on machine learning

  • ZHOU Ruozhou1, HU Xin1, FAN Yu1, FANG Zuozhong1, TIAN Jian2, DENG Guobing1
Author information +
文章历史 +

摘要

目的:探索免疫相关的特征基因在强直性脊柱(ankylosing spondylitis,AS)的诊断价值及其分子机制。方法:从GEO数据库下载GSE73756和GSE25101数据集,联合加权基因过表达网络(WGCNA)与最小绝对值收敛选择算子(LASSO)和支持向量机-递归特征消除(SVM - RFE)筛选特征基因,并评估其在AS中的诊断价值,并进行功能及通路富集分析等生物信息学分析。结果:共鉴定出5个关键免疫相关基因:CD81、IL2RB、CSF3R、IL8、CCL3L3。5个基因联合构建的诊断模型在训练集和测试集中都具有较高的诊断价值。结论:CD81、IL2RB、CSF3R、IL8、CCL3L3可能成为AS的诊断生物学标志及潜在治疗靶点。

Abstract

Objective To explore the diagnostic value and molecular mechanism of immune related characteristic genes in ankylosing spondylitis (AS). Methods Download the GSE73756 and GSE25101 datasets from the Gene Expression Omnibus (GEO) database. Combined the weighted gene overexpression network (WGCNA) and the Least absolute shrinkage and selection operator, LASSO) and the Support Vector Machine-recursive feature elimination (SVM-RFE) to screen characteristic genes and evaluate their diagnostic value in AS. Bioinformatics analysis such as functional and pathway enrichment analysis was performed. Results Finally, a total of 5 key immune related genes were identified: CD81, IL2RB, CSF3R, IL8, and CCL3L3. The diagnostic model constructed by the combination of five genes has high diagnostic value in both the training set and the test set. Conclusion CD81, IL2RB, CSF3R, IL8 and CCL3L3 may be the diagnostic biomarkers and potential therapeutic targets of AS.

关键词

强直性脊柱炎 / 免疫相关基因 / 生物信息学 / 机器学习 / 支持向量机

Key words

ankylosing spondylitis / immune related genes / bioinformatics / machine learning / support vector machine

引用本文

导出引用
周若舟, 胡昕, 范瑜, 房佐忠, 田健, 邓国兵. 基于机器学习的强直性脊柱炎免疫相关基因鉴定[J]. 湖南师范大学学报医学版. 2023, 20(2): 54-62
ZHOU Ruozhou, HU Xin, FAN Yu, FANG Zuozhong, TIAN Jian, DENG Guobing. Identification of immune related genes in ankylosing spondylitis based on machine learning[J]. Journal of Hunan Normal University(Medical Science). 2023, 20(2): 54-62
中图分类号: R681.5   

参考文献

[1] Taurog JD, Chhabra A, Colbert RA.Ankylosing Spondylitis and Axial Spondyloarthritis[J]. N Engl J Med, 2016, 375(13): 1303.
[2] Smith JA.Update on ankylosing spondylitis: current concepts in pathogenesis[J]. Curr Allergy Asthma Rep, 2015, 15(1): 489.
[3] Wenker KJ, Quint JM.Ankylosing Spondylitis[M]. Treasure Island (FL): StatPearls, 2022.
[4] Ranganathan V, Gracey E, Brown MA, et al.Pathogenesis of ankylosing spondylitis - recent advances and future directions[J]. Nat Rev Rheumatol, 2017, 13(6): 359-367.
[5] Ermoza K, Glatigny S, Jah N, et al.Tolerogenic XCR1(+) dendritic cell population is dysregulated in HLA-B27 transgenic rat model of spondyloarthritis[J]. Arthritis Res Ther, 2019, 21(1): 46.
[6] Min HK, Choi J, Lee SY, et al.Protein inhibitor of activated STAT3 reduces peripheral arthritis and gut inflammation and regulates the Th17/Treg cell imbalance via STAT3 signaling in a mouse model of spondyloarthritis[J]. J Transl Med, 2019, 17(1): 18.
[7] Giulietti M, Occhipinti G, Principato G, et al.Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis[J]. Cell Oncol (Dordr), 2017, 40(2): 181-192.
[8] Erickson B J.Basic Artificial Intelligence Techniques: Machine Learning and Deep Learning[J]. Radiol Clin North Am, 2021, 59(6): 933-940.
[9] Langfelder P, Horvath S.WGCNA: an R package for weighted correlation network analysis[J]. BMC Bioinformatics, 2008, 9: 559.
[10] Tibshirani R.The lasso method for variable selection in the Cox model[J]. Stat Med, 1997, 16(4): 385-395.
[11] Matsuo K, Purushotham S, Jiang B, et al.Survival outcome prediction in cervical cancer: Cox models vs deep-learning model[J]. Am J Obstet Gynecol, 2019, 220(4): 381 e1-e14.
[12] Chen B, Khodadoust MS, Liu CL, et al.Profiling Tumor Infiltrating Immune Cells with CIBERSORT[J]. Methods Mol Biol, 2018, 1711: 243-259.
[13] Baysal O, Durmus B, Ersoy Y, et al.Relationship between psychological status and disease activity and quality of life in ankylosing spondylitis[J]. Rheumatol Int, 2011, 31(6): 795-800.
[14] Raychaudhuri SP, Deodhar A. The classification and diagnostic criteria of ankylosing spondylitis [J]. J Autoimmun, 2014, 48-49: 128-133.
[15] Poddubnyy D. Classification vs diagnostic criteria: the challenge of diagnosing axial spondyloarthritis [J]. Rheumatology (Oxford), 2020, 59(Suppl4): iv6-iv17.
[16] Ibn Yacoub Y, Amine B, Laatiris A, et al.Relationship between diagnosis delay and disease features in Moroccan patients with ankylosing spondylitis[J]. Rheumatol Int, 2012, 32(2): 357-360.
[17] Ritchlin C, Adamopoulos IE.Axial spondyloarthritis: new advances in diagnosis and management[J]. BMJ, 2021, 372: m4447.
[18] Sieper J, Poddubnyy D.Axial spondyloarthritis[J]. Lancet, 2017, 390(10089): 73-84.
[19] Danve A, O'dell J. The ongoing quest for biomarkers in Ankylosing Spondylitis[J]. Int J Rheum Dis, 2015, 18(8): 826-834.
[20] Aviña-Zubieta JA, Chan J, De Vera A M, et al. Risk of venous thromboembolism in ankylosing spondylitis: a general population-based study[J]. Ann Rheum Dis, 2019, 78(4): 480-485.
[21] Chen W, Li W, Zhang Z, et al.Lipocalin-2 Exacerbates Lupus Nephritis by Promoting Th1 Cell Differentiation[J]. J Am Soc Nephrol, 2020, 31(10): 2263-2277.
[22] Voruganti A, Bowness P.New developments in our understanding of ankylosing spondylitis pathogenesis[J]. Immunology, 2020, 161(2): 94-102.
[23] Ramakrishnaiah V, Thumann C, Fofana I, et al.Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells[J]. Proc Natl Acad Sci U S A, 2013, 110(32): 13109-13113.
[24] Hosokawa K, Ishimaru H, Watanabe T, et al.Pax5 mediates the transcriptional activation of the CD81 gene[J]. Sci Rep, 2021, 11(1): 22919.
[25] Fujii Y, Arai Y, Nakagawa S, et al.CD81 inhibition with the cytoplasmic RNA vector producing anti-CD81 antibodies suppresses arthritis in a rat CIA model[J]. Biochem Biophys Res Commun, 2022, 604: 22-29.
[26] Waldmann TA.The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy[J]. Cancer Immunol Res, 2015, 3(3): 219-227.
[27] Ring AM, Lin JX, Feng D, et al.Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15[J]. Nat Immunol, 2012, 13(12): 1187-1195.
[28] Al-Mayouf SM, Alreefi HA, Alsinan TA, et al.Lupus manifestations in children with primary immunodeficiency diseases: Comprehensive phenotypic and genetic features and outcome[J]. Mod Rheumatol, 2021, 31(6): 1171-1178.
[29] Maxson JE, Tyner JW.Genomics of chronic neutrophilic leukemia[J]. Blood, 2017, 129(6): 715-722.
[30] Szuber N, Elliott M, Tefferi A.Chronic neutrophilic leukemia: 2020 update on diagnosis, molecular genetics, prognosis, and management[J]. Am J Hematol, 2020, 95(2): 212-224.
[31] Bihari C, Baweja S, Shasthry SM, et al.CEACAM-1 Induced CSF3-receptor Downregulation in Bone Marrow Associated With Refractory Neutropenia in Advanced Cirrhosis[J]. J Clin Transl Hepatol, 2022, 10(1): 53-62.
[32] Xiong X, Liao X, Qiu S, et al.CXCL8 in Tumor Biology and Its Implications for Clinical Translation[J]. Front Mol Biosci, 2022, 9: 723846.
[33] Horn LA, Fousek K, Palena C.Tumor Plasticity and Resistance to Immunotherapy[J]. Trends Cancer, 2020, 6(5): 432-441.
[34] Ha H, Debnath B, Neamati N.Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases[J]. Theranostics, 2017, 7(6): 1543-1588.
[35] Kim YH, Lee EE, Sim HW, et al. CCL3L3-null status is associated with susceptibility to systemic lupus erythematosus [J]. Sci Rep, 2021, 11(1): 19172.Volorpercing eu feugiatie ectem aliquat.

基金

湖南省自然科学基金面上项目(2021JJ31096); 湘南学院校级科研项目(2019XJ78); 郴州市科技局科技发展计划项目(zdyf201934)

PDF(3308 KB)

Accesses

Citation

Detail

段落导航
相关文章

/