|
|
Investigating the synergistic effects of Tripterygium glycosides and methotrexate in the management of rheumatoid arthritis through the utilization of network pharmacology and bioinformatics. |
WANG Yan1, LI Huilong1, JIAO Aijun2 |
1. Department of Gastroenterology, the Second Affiliated Hospital, Xingtai Medical College, Xingtai 054000, China; 2. Department of General Medicine, the Second Affiliated Hospital, Xingtai Medical College, Xingtai 054000, China |
|
|
Abstract Objective This study aims to explore how Tripterygium glycosides and methotrexate work together to treat rheumatoid arthritis using network pharmacology and machine learning, focusing on their synergistic effects and underlying molecular mechanisms. Methods This study used the CTD database to identify target genes of methotrexate and triptolide, and analyzed rheumatoid arthritis datasets from the GEO database to find differentially expressed genes. Shared genes between the drugs and the disease were identified using Venn diagrams. Machine learning algorithms screened core shared genes, which were then validated with clinical samples. This approach integrates network pharmacology with machine learning. Results Using systematic analysis and machine learning, we've identified IGFBP4 and CASP7 as potential targets for rheumatoid arthritis treatment with tripterygium glycosides and methotrexate. Clinical trials show that after 24 weeks, the dysregulated IGFBP4 and CASP7 levels improve, and the DAS28 score significantly decreases, suggesting that this combination therapy may alleviate rheumatoid arthritis by regulating these proteins. Conclusion This study uses systematic analysis and machine learning to uncover the molecular mechanisms of tripterygium glycosides and methotrexate in treating rheumatoid arthritis, identifying new therapeutic targets. It offers a scientific basis for personalized treatments with significant clinical value.
|
Received: 21 March 2024
|
|
|
|
Cite this article: |
WANG Yan,LI Huilong,JIAO Aijun. Investigating the synergistic effects of Tripterygium glycosides and methotrexate in the management of rheumatoid arthritis through the utilization of network pharmacology and bioinformatics.[J]. HuNan ShiFan DaXue XueBao(YiXueBan), 2024, 21(4): 161-168.
|
|
|
|
URL: |
http://yxb.hunnu.edu.cn/EN/ OR http://yxb.hunnu.edu.cn/EN/Y2024/V21/I4/161 |
[1] 崔东晓, 乐世俊, 徐顶巧, 等. 雷公藤多苷及其主要活性成分抑制类风湿性关节炎的作用机制研究进展[J]. 中草药, 2023, 54(20): 6913-6921. [2] ZHAO Z, HUA Z, LUO X, et al.Application and pharmacological mechanism of methotrexate in rheumatoid arthritis[J]. Biomed Pharmacother, 2022, 150(6): 113074. [3] WANG W, ZHOU H, LIU L.Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review[J]. Eur J Med Chem, 2018, 158(5): 502-516. [4] 吴佳, 梁翼, 李敏, 等. 艾拉莫德联合甲氨蝶呤、雷公藤多苷对类风湿关节炎关节软骨细胞损伤的修复作用及安全性分析[J]. 安徽医药, 2022, 26(1): 183-187. [5] 谷敬欣, 赵振军, 左惠芬, 等. 雷公藤多苷片联合甲氨蝶呤对类风湿关节炎合并骨质疏松患者血清骨代谢标志物水平及炎症因子的影响[J]. 现代中西医结合杂志, 2020, 29(22): 2424-2428. [6] 宫贺, 罗嘉仪, 高雪, 等. 雷公藤多苷片生物碱类成分抗肝癌作用网络药理学探讨及诱导肝癌细胞毒性验证[J]. 药物评价研究, 2024, 47(1): 17-25. [7] 张穿洋, 朱文莉, 李晓冉, 等. 急性脑卒中预后预测模型: 机器学习与传统回归模型的比较[J]. 中国CT和MRI杂志, 2023, 21(7): 24-26. [8] HAN Y, LU X, LAI W, et al.Identification of serological biomarkers for diagnosis of rheumatoid arthritis using a protein array-based approach[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2022, 42(5): 733-739. [9] 丁娟, 莫基浩. 胰岛素样生长因子Ⅱ及胰岛素样生长因子结合蛋白-6血清水平与类风湿关节炎疾病活动度的关系研究[J]. 中医正骨, 2023, 35(11): 10-13. [10] 王世海, 武晔, 王恒俊, 等. 骨关节炎患者滑膜组织中胰岛素样生长因子结合蛋白2、表皮生长因子受体表达及临床意义[J]. 中国中医骨伤科杂志, 2022, 30(5): 28-33. [11] ZHAO J, SU Y, JIAO J, et al.Identification of lncRNA and mRNA Biomarkers in Osteoarthritic Degenerative Meniscus by Weighted Gene Coexpression Network and Competing Endogenous RNA Network Analysis[J]. Biomed Res Int, 2020, 2020: 2123787. [12] CASSAUNDRA A. WHITE, JAMES DENVIR, MARIA A. SERRAT. Differential regulation of IGF‐1 pathway and accelerated bone elongation in pre‐obese juvenile mice[J]. Faseb Journal, 2022, 36. s1. r4490. [13] LIU H, TANG T.A bioinformatic study of IGFBPs in glioma regarding their diagnostic, prognostic, and therapeutic prediction value[J]. Am J Transl Res, 2023, 15(3): 2140-2155. [14] ZERROUK N, ALCRAFT R, HALL BA, et al.Large-scale computational modelling of the M1 and M2 synovial macrophages in rheumatoid arthritis[J]. NPJ Syst Biol Appl, 2024, 10(1): 10. [15] SAFDAR M, ZAHEER S, KHAILANY RA, et al.The Relevance of SNPs at 3’UTR Region of CASP7 and miR-371b-5p Associated Diseases: A Computational Analysis[J]. Cell Biochem Biophys, 2020, 78(4): 541-557. [16] WANG M, TAN J, JIANG C, et al.Inorganic arsenic influences cell apoptosis by regulating the expression of MEG3 gene[J]. Environ Geochem Health, 2021, 43(1): 475-484. [17] CANIVE M, BADIA-BRINGUÉ G, VÁZQUEZ P, et al. A Genome-Wide Association Study for Tolerance to Paratuberculosis Identifies Candidate Genes Involved in DNA Packaging, DNA Damage Repair, Innate Immunity, and Pathogen Persistence[J]. Front Immunol, 2022, 13(6): 820965. |
|
|
|