|
|
Research progress on the application of antimicrobial peptides in the detection of foodborne pathogenic bacteria |
LI Xiang1,2,3,4, ZHENG Xi1,2,3,4, GUO Yulan5, XU Kun1,2,3,4 |
1. School of Medicine, Hunan Normal University, Changsha 410013; 2. Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013; 3. Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013; 4. Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha 410013; 5. Jilin University, Changchun 130000 |
|
|
Abstract Foodborne diseases caused by pathogenic bacteria are a serious threat to human health and a serious public health problem. Rapid and accurate detection of foodborne pathogenic bacteria in food is important for the prevention and control of foodborne diseases. In recent years, a variety of different highly sensitive and specific rapid detection methods have been developed with the aim of realizing the rapid detection of pathogenic bacteria in food. These methods all need to specifically identify bacteria from complex food matrixes. To achieve this goal, many small molecule substances have been developed, such as antibodies, aptamers, phages, antimicrobial peptides (AMPs), lectins, and enzymes. These small molecule substances have different advantages and disadvantages in application. The application of antimicrobial peptides has received more and more attention because of their high stability, simple synthesis, easy availability, high affinity for bacteria, low cost of AMPs compared with antibodies, DNA probes, more stable in harsh environments, and easy to be mass-produced. Therefore, they are being applied to the development and utilization of a variety of rapid detection methods. In this review, we systematically summarized the application of antimicrobial peptides in the detection of foodborne pathogens, and discussed its application prospects.
|
Received: 07 November 2023
|
|
|
|
|
[1] COLLINS J P, SHAH H J, WELLER D L, et al.Preliminary Incidence and Trends of Infections Caused by Pathogens Transmitted Commonly Through Food - Foodborne Diseases Active Surveillance Network, 10 U. S. Sites, 2016-2021[J]. MMWR Morb Mortal Wkly Rep, 2022, 71(40): 1260-1264. [2] 胡金宇, 王锐.2010—2019年全国细菌性食物中毒事件流行病学特征分析[J]. 中国食品卫生杂志, 2023, 35(08): 1225-1230. [3] BAUMLER A J, SPERANDIO V.Interactions between the microbiota and pathogenic bacteria in the gut[J]. Nature, 2016, 535(7610): 85-93. [4] CARLSON C J, KRACALIK I T, ROSS N, et al.The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife[J]. Nat Microbiol, 2019, 4(8): 1337-1343. [5] SCHARFF R L, BESSER J, SHARP D J, et al.An Economic Evaluation of PulseNet A Network for Food borne Disease Surveillance[J]. Am J Prev Med, 2016, 50(5): S66-S73. [6] BISHT A, KAMBLE M P, CHOUDHARY P, et al.A surveillance of food borne disease outbreaks in India: 2009-2018[J]. Food Control, 2021, 121(0): 107630. [7] 夏琳琳, 邱爽, 王若彤, 等.2011—2020年中国食源性疾病暴发的时空趋势[J]. 卫生研究, 2023, 52(02): 226-231. [8] WANG D, HINKLEY T, CHEN J, et al.Phage based electrochemical detection of Escherichia coli in drinking water using affinity reporter probes[J]. Analyst, 2019, 144(4): 1345-1352. [9] AGEITOS J M, SANCHEZ-PEREZ A, CALO-MATA P, et al.Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria[J]. Biochem Pharmacol, 2017, 133: 117-138. [10] TEMPLIER V, ROUX A, ROUPIOZ Y, et al.Ligands for label-free detection of whole bacteria on biosensors: A review[J]. TrAC Trends in Analytical Chemistry, 2016, 79: 71-79. [11] ZEINHOM M, WANG Y, SONG Y, et al.A portable smart-phone device for rapid and sensitive detection of E. coli O157: H7 in Yoghurt and Egg[J]. Biosens Bioelectron, 2018, 99: 479-485. [12] ZHENG L, CAI G, WANG S, et al. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157: H7 using gold nanoparticle aggregation and smart phone imaging[J]. Biosens Bioelectron, 2019, 124-125: 143-149. [13] 马雪婷, 冯雨欣, 耿冰雨, 等. 食源性大肠杆菌危害及其检测技术研究进展[J]. 广东化工, 2021, 48(22): 191-193. [14] 蒋培红. 沙门氏菌的危害及其对畜产品污染的控制策略[J]. 中国动物检疫, 2007, 24(10): 22. [15] RADHAKRISHNAN R, POLTRONIERI P.Fluorescence-Free Biosensor Methods in Detection of Food Pathogens with a Special Focus on Listeria monocytogenes[J]. Biosensors (Basel), 2017, 7(4): 63. [16] PALACIOS A, OTTO M, FLAHERTY E, et al.Multistate Outbreak of Listeria monocytogenes Infections Linked to Fresh, Soft Hispanic-Style Cheese - United States, 2021[J]. MMWR Morb Mortal Wkly Rep, 2022, 71(21): 709-712. [17] WAKABAYASHI Y, UMEDA K, YONOGI S, et al.Staphylococcal food poisoning caused by Staphylococcus argenteus harboring staphylococcal enterotoxin genes[J]. Int J Food Microbiol, 2018, 265: 23-29. [18] CHAC D, DUNMIRE C N, SINGH J, et al.Update on Environmental and Host Factors Impacting the Risk of Vibrio cholerae Infection[J]. ACS Infect Dis, 2021, 7(5): 1010-1019. [19] 张传斌, 袁飞, 黄海兰, 等. 食品中志贺氏菌检测方法的研究进展[J]. 食品工业, 2017, 38(06): 262-266. [20] 李杜娟. 桶装水中检出铜绿假单胞菌的原因及防控措施[J]. 河南科技, 2020, 39(34): 90-93. [21] KANG C H, SHIN Y, YU H, et al.Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from oysters in Korea[J]. Mar Pollut Bull, 2018, 135: 69-74. [22] RAJAPAKSHA P, ELBOURNE A, GANGADOO S, et al.A review of methods for the detection of pathogenic microorganisms[J]. The Analyst, 2019, 144(2): 396-411. [23] ZHAO X, LIN C W, WANG J, et al.Advances in rapid detection methods for foodborne pathogens[J]. J Microbiol Biotechnol, 2014, 24(3): 297-312. [24] 孔玉方, 王慧煜, 韩雪清. 胶体金免疫层析技术在食源性致病微生物检测中的应用[J]. 中国兽医杂志, 2019, 55(04): 82-84. [25] PILAR T, MARIA I G, TANJA K, et al.Optimization and validation of a PMA qPCR method for Escherichia coli quantification in primary production[J]. Food Control, 2016, 62. [26] 刘丽萍, 徐岚. 环介导等温核酸扩增法快速检测副溶血性弧菌的研究[J]. 中国卫生检验杂志, 2016, 26(06): 808-810. [27] LUCIAN ROTARIU F L N J, BALA. Electrochemical biosensors for fast detection of food contaminants -trends and perspective[J].2016, 79: 80-87. [28] KUMAR H, KUČA K, BHATIA S K, et al. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens[J]. Sensors, 2020, 20(7): 1966. [29] WANG L, QI W, WANG M, et al.A pipette-adapted biosensor for Salmonella detection[J]. Biosens Bioelectron, 2022, 218: 114765. [30] WANG J, TAN L, BI W, et al.Ultrasensitive microfluidic immunosensor with stir bar enrichment for point-of-care test of Staphylococcus aureus in foods triggered by DNAzyme-assisted click reaction[J]. Food Chem, 2022, 378: 132093. [31] BAZIN I, TRIA S A, HAYAT A, et al.New biorecognition molecules in biosensors for the detection of toxins[J]. Biosens Bioelectron, 2017, 87: 285-298. [32] LIU W, SONG H, CHEN Q, et al.Recent advances in the selection and identification of antigen-specific nanobodies[J]. Mol Immunol, 2018, 96: 37-47. [33] HWANG K, HOSSEINZADEH P, LU Y.Biochemical and Biophysical Understanding of Metal Ion Selectivity of DNAzymes[J]. Inorganica Chim Acta, 2016, 452: 12-24. [34] ALIAKBAR A Z, HASHEMI A, DE PLANO L M, et al. Bacteriophage Based Biosensors: Trends, Outcomes and Challenges[J]. Nanomaterials (Basel), 2020, 10(3): 501. [35] HABIMANA J D D, JI J, SUN X. Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics[J]. Analytical letters, 2018, 51(18): 2933-2966. [36] MIRANDA J L, OLIVEIRA M D L, OLIVEIRA I S, et al. A simple nanostructured biosensor based on clavanin A antimicrobial peptide for gram-negative bacteria detection[J]. Biochemical engineering journal, 2017, 124: 108-114. [37] MANNOOR M S, ZHANG S, LINK A J, et al.Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides[J]. Proc Natl Acad Sci U S A, 2010, 107(45): 19207-19212. [38] MANDAL S M, ROY A, GHOSH A K, et al.Challenges and future prospects of antibiotic therapy: from peptides to phages utilization[J]. Front Pharmacol, 2014, 5: 105. [39] HAZAM P K, GOYAL R, RAMAKRISHNAN V.Peptide based antimicrobials: Design strategies and therapeutic potential[J]. Prog Biophys Mol Biol, 2019, 142: 10-22. [40] ERDEM B M, KESMEN Z.Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds[J]. J Appl Microbiol, 2022, 132(3): 1573-1596. [41] TING D S J, BEUERMAN R W, DUA H S, et al. Strategies in Translating the Therapeutic Potentials of Host Defense Peptides[J]. Front Immunol, 2020, 11: 983. [42] WANG C, HONG T, CUI P, et al.Antimicrobial peptides towards clinical application: Delivery and formulation[J]. Adv Drug Deliv Rev, 2021, 175: 113818. [43] KOPRIVNJAK T, PESCHEL A.Bacterial resistance mechanisms against host defense peptides[J]. Cell Mol Life Sci, 2011, 68(13): 2243-2254. [44] ZHANG P, WU S, LI J, et al.Dual-sensitive antibacterial peptide nanoparticles prevent dental caries[J]. Theranostics, 2022, 12(10): 4818-4833. [45] WANG J, DOU X, SONG J, et al.Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3): 831-859. [46] 赵茜. 抗菌肽AWRK6对体内外胰岛素分泌影响及其机制初步研究[D]. 沈阳: 辽宁大学, 2014. [47] WANG W, LI P, HUANG Q, et al.Functionalized antibacterial peptide with DNA cleavage activity for enhanced bacterial disinfection[J]. Colloids Surf B Biointerfaces, 2023, 228: 113412. [48] AMIRI M, BEZAATPOUR A, JAFARI H, et al.Electrochemical Methodologies for the Detection of Pathogens[J]. ACS Sens, 2018, 3(6): 1069-1086. [49] HUAN Y, KONG Q, MOU H, et al.Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields[J]. Front Microbiol, 2020, 11: 582779. [50] KANCHANAPALLY R, VIRAKA N B, SINHA S S, et al.Antimicrobial Peptide-Conjugated Graphene Oxide Membrane for Efficient Removal and Effective Killing of Multiple Drug Resistant Bacteria[J]. RSC Adv, 2015, 5(24): 18881-18887. [51] JIANG K J K, ETAYASH H E H, AZMI S A S, et al. Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy[J]. Analytical Methods, 2015, 7(1759-9660): 9744-9748. [52] PARDOUX É, BOTURYN D, ROUPIOZ Y.Antimicrobial Peptides as Probes in Biosensors Detecting Whole Bacteria: A Review[J]. Molecules, 2020, 25(8): 1998. [53] LIU X, MARRAKCHI M, XU D, et al.Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria[J]. Biosens Bioelectron, 2016, 80: 9-16. [54] LI Y, AFRASIABI R, FATHI F, et al.Impedance based detection of pathogenic E. coli O157: H7 using a ferrocene-antimicrobial peptide modified biosensor[J]. Biosensors and Bioelectronics, 2014, 58: 193-199. [55] LI Z, DAI G, LUO F, et al.An electrochemical sensor for bacterial lipopolysaccharide detection based on dual functional Cu (2+) -modified metal-organic framework nanoparticles[J]. Mikrochim Acta, 2020, 187(7): 415. [56] STERN B T, YAKOBI R, HUREVICH M, et al.Impedimetric Bacterial Detection Using Random Antimicrobial Peptide Mixtures[J]. Sensors (Basel), 2023, 23(2): 561. [57] LI Z, YANG H, SUN L, et al.Electrogenerated chemiluminescence biosensors for the detection of pathogenic bacteria using antimicrobial peptides as capture/signal probes[J]. Sensors and Actuators B: Chemical, 2015, 210: 468-474. [58] WILSON D, MATERÓN E M, IBÁÑEZ-REDÍN G, et al. Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides[J]. Talanta, 2019, 194: 611-618. [59] ANDRADE C A S, NASCIMENTO J M, OLIVEIRA I S, et al. Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial detection[J]. Colloids Surf B Biointerfaces, 2015, 135: 833-839. [60] LV E, DING J, QIN W.Potentiometric Detection ofListeria monocytogenes via a Short Antimicrobial Peptide Pair-Based Sandwich Assay[J]. Analytical Chemistry, 2018, 90(22): 13600-13606. [61] QIAO Z H, LEI C Y, FU Y C, et al.An antimicrobial peptide-based colorimetric bioassay for rapid and sensitive detection of E. coli O157: H7[J]. RSC Advances, 2017, 7(26): 15769-15775. [62] QIAO Z H, LEI C Y, FU Y C, et al . Rapid and sensitive detection of E. coli O157: H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification[J]. Analytical Methods, 2017, 9(35): 5204-5210. [63] KULAGINA N V, LASSMAN M E, LIGLER F S, et al.Antimicrobial Peptides for Detection of Bacteria in Biosensor Assays[J]. Analytical Chemistry, 2005, 77(19): 6504-6508. [64] KULAGINA N V, SHAFFER K M, ANDERSON G P, et al.Antimicrobial peptide-based array for Escherichia coli and Salmonella screening[J]. Analytica Chimica Acta, 2006, 575(1): 9-15. [65] ARCIDIACONO S, PIVARNIK P, MELLO C M, et al.Cy5 labeled antimicrobial peptides for enhanced detection of Escherichia coli O157: H7[J]. Biosensors and Bioelectronics, 2008, 23(11): 1721-1727. [66] CHEN H, ZHANG M, LI B, et al.Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity[J]. Biomaterials, 2015, 53: 532-544. [67] HAN J, CHENG H, WANG B, et al.A Polymer/Peptide Complex-Based Sensor Array That Discriminates Bacteria in Urine[J]. Angew Chem Int Ed Engl, 2017, 56(48): 15246-15251. [68] SHI X, ZHANG X, YAO Q, et al.A novel method for the rapid detection ofmicrobes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor[J]. J Microbiol Methods, 2017, 133: 69-75. [69] FOUDEH A M, FATANAT D T, VERES T, et al.Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics[J]. Lab Chip, 2012, 12(18): 3249-3266. [70] YIN B F, WAN X H, YANG M Z, et al.Wave-shaped microfluidic chip assisted point-of-care testing for accurate and rapid diagnosis of infections[J]. Mil Med Res, 2022, 9(1): 8. [71] SHANG Y, SUN J, YE Y, et al.Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection[J]. Crit Rev Food Sci Nutr, 2020, 60(2): 201-224. [72] LILLEHOJ P B, KAPLAN C W, HE J, et al.Rapid, Electrical Impedance Detection of Bacterial Pathogens Using Immobilized Antimicrobial Peptides[J]. SLAS Technology, 2014, 19(1): 42-49. [73] YOO J H, WOO D H, CHANG M, et al.Microfluidic based biosensing for Escherichia coli detection by embedding antimicrobial peptide-labeled beads[J]. Sensors and Actuators B: Chemical, 2014, 191: 211-218. [74] CHANG M, YOO J H, WOO D H, et al.Efficient detection of Escherichia coli O157: H7 using a reusable microfluidic chip embedded with antimicrobial peptide-labeled beads[J]. The Analyst, 2015, 140(23): 7997-8006. [75] YONEKITA T, OHTSUKI R, HOJO E, et al.Development of a novel multiplex lateral flow assay using an antimicrobial peptide for the detection of Shiga toxin-producing Escherichia coli[J]. J Microbiol Methods, 2013, 93(3): 251-256. [76] ZHOU C, ZOU H, LI M, et al.Fiber optic surface plasmon resonance sensor for detection of E. coli O157: H7 based on antimicrobial peptides and AgNPs-rGO[J]. Biosensors & bioelectronics, 2018, 117: 347-353. |
|
|
|