Abstract:Alzheimer's disease (AD) is a neurodegenerative disease associated with cognitive and behavioral disorder due to the progressive loss of normal neuronal structure and function. It is mostly seen in the elderly over 70 years old, causing increased social burden. So far, there are no effective drugs to treat AD, and understanding the molecular mechanism causing AD has received intensive focus. Recent studies have pointed to a role of abnormal lipid metabolism in AD. This was supported by large Genome-Wide Association Studies, which have uncovered the changes of key lipid metabolism-associated processes and genes in the initiation and progression of AD. This review summarizes the current hypotheses on the pathogenesis of AD, details the changes in lipid metabolism associated with AD and further discusses the potential mechanisms by which abnormal lipid metabolism contributes to AD pathogenesis. With this, we hope to foster a comprehensive understanding of the AD pathogenesis.
[1] Duyckaerts C, Delatour B, Potier MC.Classification and basic pathology of Alzheimer disease[J]. Acta Neuropathol, 2009, 118(1): 5-36. [2] Penke B, Szűcs M, Bogár F.Oligomerization and Conformational Change Turn Monomeric beta-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis[J]. Molecules, 2020, 25(7): 1659. [3] 2020 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2020, 19(4): 1598-1695. [4] Jack CR Jr, Albert MS, Knopman DS, et al.Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 257-262. [5] Sabbagh MN.Alzheimer's Disease Drug Development Pipeline 2020[J]. J Prev Alzheimers Dis, 2020, 7(2): 66-67. [6] McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 263-269. [7] Yaari R, Fleisher AS, Tariot PN. Updates to diagnostic guidelines for Alzheimer's disease[J]. Prim Care Companion CNS Disord, 2011, 13(5): PCC.11f01262. [8] Yu JT, Tan L, Hardy J.Apolipoprotein E in Alzheimer's disease: an update[J]. Annu Rev Neurosci, 2014, 37: 79-100. [9] Bowen DM, Smith CB, White P, et al.Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies[J]. Brain, 1976, 99(3): 459-496. [10] Liu J, Chang L, Song Y, et al.The Role of NMDA Receptors in Alzheimer's Disease[J]. Front Neurosci, 2019, 13: 43 [11] Hampel H, Mesulam MM, Cuello AC, et al.The cholinergic system in the pathophysiology and treatment of Alzheimer's disease[J]. Brain, 2018, 141(7): 1917-1933. [12] Agrawal M, Saraf S, Saraf S, et al.Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs[J]. J Control Release, 2018, 281: 139-177. [13] Haig GM, Bain EE, Robieson WZ, et al.A Randomized Trial to Assess the Efficacy and Safety of ABT-126, a Selective alpha7 Nicotinic Acetylcholine Receptor Agonist, in the Treatment of Cognitive Impairment in Schizophrenia[J]. Am J Psychiatry, 2016, 173(8): 827-835. [14] Long JM, Holtzman DM.Alzheimer Disease: An Update on Pathobiology and Treatment Strategies[J]. Cell, 2019, 179(2): 312-339. [15] Schenk D, Barbour R, Dunn W, et al.Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse[J]. Nature, 1999, 400(6740): 173-177. [16] Orgogozo JM, Gilman S, Dartigues JF, et al.Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization[J]. Neurology, 2003, 61(1): 46-54. [17] Schneider L.A resurrection of aducanumab for Alzheimer's disease[J]. Lancet Neurology, 2020, 19(2): 111-112. [18] Loureiro JC, Pais MV, Stella F, et al.Passive antiamyloid immunotherapy for Alzheimer's disease[J]. Curr Opin Psychiatry, 2020, 33(3): 284-291. [19] Beel AJ, Sanders CR.Substrate specificity of gamma-secretase and other intramembrane proteases[J]. Cell Mol Life Sci, 2008, 65(9): 1311-1334. [20] Alberdi E, Sánchez-Gómez MV, Cavaliere F, et al.Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors[J]. Cell Calcium, 2010, 47(3): 264-272. [21] Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation,Human Disease: A Summary of Progress Over the Last Decade[J]. Annu Rev Biochem, 2017, 86: 27-68. [22] Schneider LS, Mangialasche F, Andreasen N, et al.Clinical trials and late-stage drug development for Alzheimer's disease: an appraisal from 1984 to 2014[J]. J Intern Med, 2014, 275(3): 251-283. [23] Choi ML, Gandhi S.Crucial role of protein oligomerization in the pathogenesis of Alzheimer's and Parkinson's diseases[J]. FEBS J, 2018, 285(19): 3631-3644. [24] Selkoe DJ, Hardy J.The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Mol Med, 2016, 8(6): 595-608. [25] Chen XQ, Mobley WC.Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Abeta and Tau Species[J]. Front Neurosci, 2019, 13: 659. [26] Cline EN, Bicca MA, Viola KL, et al.The Amyloid-beta Oligomer Hypothesis: Beginning of the Third Decade[J]. J Alzheimers Dis, 2018, 64(s1): S567-S610. [27] García-Escudero V, Gargini R, Martín-Maestro P, et al.Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease[J]. Neurosci Lett, 2017, 655: 101-108. [28] Berriman J, Serpell LC, Oberg KA, et al.Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure[J]. Proc Natl Acad Sci U S A, 2003, 100(15): 9034-9038. [29] Hoover BR, Reed MN, Su J, et al.Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration[J]. Neuron, 2010, 68(6): 1067-1081. [30] Zhou L, McInnes J, Wierda K, et al. Tau association with synaptic vesicles causes presynaptic dysfunction[J]. Nat Commun, 2017, 8: 15295. [31] Yoo JH, Valdovinos MG, Williams DC.Relevance of donepezil in enhancing learning and memory in special populations: a review of the literature[J]. J Autism Dev Disord, 2007, 37(10): 1883-1901. [32] Wang H, Zhang HY.Reconsideration of Anticholinesterase Therapeutic Strategies against Alzheimer's Disease[J]. Acs Chemical Neuroscience, 2019, 10(2): 852-862. [33] Mesulam MM.Cholinergic Circuitry of the Human Nucleus Basalis and Its Fate in Alzheimer's Disease[J]. J Comp Neurol, 2013, 521(18): 4124-4144. [34] Rosenberg PB, Nowrangi MA, Lyketsos CG. Neuropsychiatric symptoms in Alzheimer's disease: What might be associated brain circuits? [J]. Mol Aspects Med, 2015, 43-44: 25-37. [35] Martorana A, Koch G."Is dopamine involved in Alzheimer's disease?"[J]. Front Aging Neurosci, 2014, 6: 252. [36] Luebke JI, Weaver CM, Rocher AB, et al.Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models[J]. Brain Struct Funct, 2010, 214(2-3): 181-199. [37] Whitehouse PJ, Price DL, Clark AW, et al.Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis[J]. Annals of neurology, 1981, 10(2): 122-126. [38] Drachman DA, Leavitt J.Human memory and the cholinergic system. A relationship to aging?[J]. Arch Neurol, 1974, 30(2): 113-121. [39] Summers WK, Majovski LV, Marsh GM, et al.Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type[J]. N Engl J Med, 1986, 315(20): 1241-1245. [40] Calsolaro V, Edison P.Neuroinflammation in Alzheimer's disease: Current evidence and future directions[J]. Alzheimers Dement, 2016, 12(6): 719-732. [41] McGeer PL, Rogers J, McGeer EG. Inflammation, Antiinflammatory Agents, and Alzheimer's Disease: The Last 22 Years[J]. J Alzheimers Dis, 2016, 54(3): 853-857. [42] Mrak RE, Griffinbc WS.The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer's disease[J]. Neurobiol Aging, 2001, 22(6): 915-922. [43] Hong S, Beja-Glasser VF, Nfonoyim BM, et al.Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286): 712-716. [44] Somers C, Goossens J, Engelborghs S, et al.Selecting Aβ isoforms for an Alzheimer's disease cerebrospinal fluid biomarker panel[J]. Biomark Med, 2017, 11(2): 169-178. [45] Shevchenko A, Simons K.Lipidomics: coming to grips with lipid diversity[J]. Nat Rev Mol Cell Biol, 2010, 11(8): 593-598. [46] Wong MW, Braidy N, Poljak A, et al.Dysregulation of lipids in Alzheimer's disease and their role as potential biomarkers[J]. Alzheimers Dement, 2017, 13(7): 810-827. [47] Brugger B.Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry[J]. Annu Rev Biochem, 2014, 83: 79-98. [48] Fahy E, Subramaniam S, Murphy RC, et al.Update of the LIPID MAPS comprehensive classification system for lipids[J]. J Lipid Res, 2009, 50(Suppl): S9-14. [49] Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, et al.Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers[J]. Int J Mol Sci, 2019, 20(15): 3810. [50] Chew H, Solomon VA, Fonteh AN.Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies[J]. Front Physiol, 2020, 11: 598. [51] Cunnane SC, Schneider JA, Tangney C, et al.Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease[J]. J Alzheimers Dis, 2012, 29(3): 691-697. [52] Fonteh AN, Cipolla M, Chiang AJ, et al.Polyunsaturated Fatty Acid Composition of Cerebrospinal Fluid Fractions Shows Their Contribution to Cognitive Resilience of a Pre-symptomatic Alzheimer's Disease Cohort[J]. Front Physiol, 2020, 11: 83. [53] Han X, M Holtzman D, McKeel DW Jr, et al. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis[J]. J Neurochem, 2002, 82(4): 809-818. [54] Jazvinšćak Jembrek M, Hof PR, Šimić G.Ceramides in Alzheimer's Disease: Key Mediators of Neuronal Apoptosis Induced by Oxidative Stress and A beta Accumulation[J]. Oxid Med Cell Longev, 2015, 2015: 346783. [55] Kosicek M, Hecimovic S.Phospholipids and Alzheimer's disease: alterations, mechanisms and potential biomarkers[J]. Int J Mol Sci, 2013, 14(1): 1310-1322. [56] Sanchez-Mejia RO, Newman JW, Toh S, et al.Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease[J]. Nat Neurosci, 2008, 11(11): 1311-1318. [57] El Gaamouch F, Jing P, Xia J, et al.Alzheimer's Disease Risk Genes and Lipid Regulators[J]. J Alzheimers Dis, 2016, 53(1): 15-29. [58] Bennett SA, Valenzuela N, Xu H, et al.Using neurolipidomics to identify phospholipid mediators of synaptic (dys) function in Alzheimer's Disease[J]. Front Physiol, 2013, 4: 168. [59] Yin F.Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise[J]. FEBS J, 2023, 290(6): 1420-1453. [60] Karch CM, Goate AM.Alzheimer's disease risk genes and mechanisms of disease pathogenesis[J]. Biol Psychiatry, 2015, 77(1): 43-51. [61] Hao S, Wang R, Zhang Y, et al.Prediction of Alzheimer's Disease-Associated Genes by Integration of GWAS Summary Data and Expression Data[J]. Front Genet, 2018, 9: 653. [62] Wernette-Hammond ME, Lauer SJ, Corsini A, et al.Glycosylation of human apolipoprotein E. The carbohydrate attachment site is threonine 194[J]. J Biol Chem, 1989, 264(15): 9094-9101. [63] Chen Y, Strickland MR, Soranno A, et al.Apolipoprotein E: Structural Insights and Links to Alzheimer Disease Pathogenesis[J]. Neuron, 2021, 109(2): 205-221. [64] Houlden H, Crook R, Backhovens H, et al.ApoE genotype is a risk factor in nonpresenilin early-onset Alzheimer's disease families[J]. Am J Med Genet, 1998, 81(1): 117-121. [65] Bandaru VV, Troncoso J, Wheeler D, et al.ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer's but not normal brain[J]. Neurobiol Aging, 2009, 30(4): 591-599. [66] Chartier-Harlin MC, Parfitt M, Legrain S, et al.Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer's disease: analysis of the 19q13.2 chromosomal region[J]. Hum Mol Genet, 1994, 3(4): 569-574. [67] Conejero-Goldberg C, Gomar JJ, Bobes-Bascaran T, et al.APOE2 enhances neuroprotection against Alzheimer's disease through multiple molecular mechanisms[J]. Mol Psychiatry, 2014, 19(11): 1243-1250. [68] Corder EH, Saunders AM, Risch NJ, et al.Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease[J]. Nat Genet, 1994, 7(2): 180-184. [69] Liu CC, Liu CC, Kanekiyo T, et al.Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy[J]. Nat Rev Neurol, 2013, 9(2): 106-118. [70] Neu SC, Pa J, Kukull W, et al.Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease: A Meta-analysis[J]. JAMA Neurol, 2017, 74(10): 1178-1189. [71] Farrer LA, Cupples LA, Haines JL, et al.Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium[J]. Jama, 1997, 278(16): 1349-1356. [72] Genin E, Hannequin D, Wallon D, et al.APOE and Alzheimer disease: a major gene with semi-dominant inheritance[J]. Mol Psychiatry, 2011, 16(9): 903-907. [73] Giau VV, Bagyinszky E, An SS, et al.Role of apolipoprotein E in neurodegenerative diseases[J]. Neuropsychiatr Dis Treat, 2015, 11: 1723-1737. [74] Paloneva J, Manninen T, Christman G, et al.Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype[J]. Am J Hum Genet, 2002, 71(3): 656-662. [75] Guerreiro RJ, Lohmann E, Brás JM, et al.Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement[J]. JAMA Neurol, 2013, 70(1): 78-84. [76] Yeh FL, Wang Y, Tom I, et al.TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia[J]. Neuron, 2016, 91(2): 328-340. [77] Wang Y, Cella M, Mallinson K, et al.TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model[J]. Cell, 2015, 160(6): 1061-1071. [78] Kober DL, Brett TJ.TREM2-Ligand Interactions in Health and Disease[J]. J Mol Biol, 2017, 429(11): 1607-1629. [79] Cruchaga C, Kauwe JS, Harari O, et al.GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease[J]. Neuron, 2013, 78(2): 256-268. [80] Guerreiro R, Wojtas A, Bras J, et al.TREM2 variants in Alzheimer's disease[J]. N Engl J Med, 2013, 368(2): 117-177. [81] Kim WS, Weickert CS, Garner B.Role of ATP-binding cassette transporters in brain lipid transport and neurological disease[J]. J Neurochem, 2008, 104(5): 1145-1166. [82] Abe-Dohmae S, Ikeda Y, Matsuo M, et al.Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein[J]. J Biol Chem, 2004, 279(1): 604-611. [83] Lambert JC, Ibrahim-Verbaas CA, Harold D, et al.Meta-analysis of 74, 046 individuals identifies 11 new susceptibility loci for Alzheimer's disease[J]. Nat Genet, 2013, 45(12): 1452-1458. [84] Karch CM, Jeng AT, Nowotny P, et al.Expression of novel Alzheimer's disease risk genes in control and Alzheimer's disease brains[J]. PLoS One, 2012,7(11):e50976. [85] Vasquez JB, Fardo DW, Estus S.ABCA7 expression is associated with Alzheimer's disease polymorphism and disease status[J]. Neurosci Lett, 2013, 556: 58-62. [86] Kim WS, Li H, Ruberu K, et al.Deletion of Abca7 increases cerebral amyloid-beta accumulation in the J20 mouse model of Alzheimer's disease[J]. J Neurosci, 2013, 33(10): 4387-4394. [87] Ehehalt R, Keller P, Haass C, et al.Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts[J]. J Cell Biol, 2003, 160(1): 113-123. [88] Cheng H, Vetrivel KS, Gong P, et al.Mechanisms of disease: new therapeutic strategies for Alzheimer's disease-targeting APP processing in lipid rafts[J]. Nat Clin Pract Neurol, 2007, 3(7): 374-382. [89] Yuksel M, Tacal O.Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer's disease development: An up-to-date review[J]. Eur J Pharmacol, 2019, 856: 172415. [90] Mukadam AS, Breusegem SY, Seaman MNJ.Analysis of novel endosome-to-Golgi retrieval genes reveals a role for PLD3 in regulating endosomal protein sorting and amyloid precursor protein processing[J]. Cell Mol Life Sci, 2018, 75(14): 2613-2625. [91] Cheng F, Cappai R, Lidfeldt J, et al.Amyloid precursor protein (APP) /APP-like protein 2(APLP2) expression is required to initiate endosome-nucleus-autophagosome trafficking of glypican-1-derived heparan sulfate[J]. J Biol Chem, 2014, 289(30): 20871-20878. [92] Kojro E, Gimpl G, Lammich S, et. al. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10[J]. Proc Natl Acad Sci U S A, 2001, 98(10): 5815-5820. [93] Puglielli L, Ellis BC, Saunders AJ, et al.Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis[J]. J Biol Chem, 2003, 278(22): 19777-19783. [94] Grimm MO, Grimm HS, Pätzold AJ, et al.Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin[J]. Nat Cell Biol, 2005, 7(11): 1118-1123. [95] He X, Huang Y, Li B, et al.Deregulation of sphingolipid metabolism in Alzheimer's disease[J]. Neurobiol Aging, 2010, 31(3): 398-408. [96] Leng F, Edison P.Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol, 2021, 17(3): 157-172. [97] Daynes RA, Jones DC.Emerging roles of PPARs in inflammation and immunity[J]. Nat Rev Immunol, 2002, 2(10): 748-759. [98] Wang WY, Tan MS, Yu JT, et al.Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease[J]. Ann Transl Med, 2015, 3(10): 136. [99] Zhu L, Liu X, Nemeth DP, et al.Interleukin-1 causes CNS inflammatory cytokine expression via endothelia-microglia bi-cellular signaling[J]. Brain Behav Immun, 2019, 81: 292-304. [100] Chiurchiu V, Leuti A, Maccarrone M.Bioactive Lipids and Chronic Inflammation: Managing the Fire Within[J]. Front Immunol, 2018, 9: 38. [101] Maclean FL, Horne MK, Williams RJ, et al.Review: Biomaterial systems to resolve brain inflammation after traumatic injury[J]. APL Bioeng, 2018, 2(2): 021502. [102] Basil MC, Levy BD.Specialized pro-resolving mediators: endogenous regulators of infection and inflammation[J]. Nat Rev Immunol, 2016, 16(1): 51-67. [103] Wang X, Zhu M, Hjorth E, et al.Resolution of inflammation is altered in Alzheimer's disease[J]. Alzheimers Dement, 2015, 11(1): 40-50. [104] Kantarci A, Aytan N, Palaska I, et al.Combined administration of resolvin E1 and lipoxin A4 resolves inflammation in a murine model of Alzheimer's disease[J]. Exp Neurol, 2018, 300: 111-120. [105] Dunn HC, Ager RR, Baglietto-Vargas D, et al.Restoration of lipoxin A4 signaling reduces Alzheimer's disease-like pathology in the 3xTg-AD mouse model[J]. J Alzheimers Dis, 2015, 43(3): 893-903. [106] Ricciotti E, FitzGerald GA. Prostaglandins and inflammation[J]. Arterioscler Thromb Vasc Biol, 2011, 31(5): 986-1000. [107] Iyú D, Jüttner M, Glenn JR, et al.PGE1 and PGE2 modify platelet function through different prostanoid receptors[J]. Prostaglandins Other Lipid Mediat, 2011, 94(1-2): 9-16. [108] Montine TJ, Sidell KR, Crews BC, et al.Elevated CSF prostaglandin E2 levels in patients with probable AD[J]. Neurology, 1999, 53(7): 1495-1498. [109] Minhas PS, Latif-Hernandez A, McReynolds MR, et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing[J]. Nature, 2021, 590(7844): 122-128. [110] Shi J, Wang Q, Johansson JU, et al.Inflammatory prostaglandin E2 signaling in a mouse model of Alzheimer disease[J]. Ann Neurol, 2012, 72(5): 788-798. [111] Liang X, Wang Q, Hand T, et al.Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease[J]. J Neurosci, 2005, 25(44): 10180-10187. [112] Johansson JU, Woodling NS, Wang Q, et al.Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models[J]. J Clin Invest, 2015, 125(1): 350-364. [113] Segarra M, Aburto MR, Acker-Palmer A.Blood-Brain Barrier Dynamics to Maintain Brain Homeostasis[J]. Trends Neurosci, 2021, 44(5): 393-405. [114] Ben-Zvi A, Lacoste B, Kur E, et al.Mfsd2a is critical for the formation and function of the blood-brain barrier[J]. Nature, 2014, 509(7501): 507-511. [115] Andreone BJ, Chow BW, Tata A, et al. Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis[J]. Neuron, 2017, 94(3): 581-594. e5. [116] Pan Y, Choy KHC, Marriott PJ, et al.Reduced blood-brain barrier expression of fatty acid-binding protein 5 is associated with increased vulnerability of APP/PS1 mice to cognitive deficits from low omega-3 fatty acid diets[J]. J Neurochem, 2018, 144(1): 81-92. [117] Belayev L, Hong SH, Menghani H, et al.Docosanoids Promote Neurogenesis and Angiogenesis, Blood-Brain Barrier Integrity, Penumbra Protection, and Neurobehavioral Recovery After Experimental Ischemic Stroke[J]. Mol Neurobiol, 2018, 55(8): 7090-7106. [118] Yin F, Sancheti H, Cadenas E.Mitochondrial thiols in the regulation of cell death pathways[J]. Antioxid Redox Signal, 2012, 17(12): 1714-1727. [119] Apak R, Özyürek M, Güçlü K, et al.Antioxidant Activity/Capacity Measurement.3. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays[J]. J Agric Food Chem, 2016, 64(5): 1046-1070. [120] Hameister R, Kaur C, Dheen ST, et al.Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(5): 2073-2087. [121] Cheignon C, Jones M, Atrián-Blasco E, et al.Identification of key structural features of the elusive Cu-Abeta complex that generates ROS in Alzheimer's disease[J]. Chem Sci, 2017, 8(7): 5107-5118. [122] Goodman LD, Bellen HJ.Recent insights into the role of glia and oxidative stress in Alzheimer's disease gained from Drosophila[J]. Curr Opin Neurobiol, 2022, 72: 32-38. [123] Sultana R, Perluigi M, Butterfield DA.Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain[J]. Free Radic Biol Med, 2013, 62: 157-169. [124] Cheignon C, Tomas M, Bonnefont-Rousselot D, et al.Oxidative stress and the amyloid beta peptide in Alzheimer's disease[J]. Redox Biol, 2018, 14: 450-464. [125] Markesbery WR, Kryscio RJ, Lovell MA, et al.Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment[J]. Ann Neurol, 2005, 58(5): 730-750. [126] Prasad VV, Nithipatikom K, Harder DR.Ceramide elevates 12-hydroxyeicosatetraenoic acid levels and upregulates 12-lipoxygenase in rat primary hippocampal cell cultures containing predominantly astrocytes[J]. Neurochem Int, 2008, 53(6-8): 220-229. [127] Dinkins MB, Enasko J, Hernandez C, et al.Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse[J]. J Neurosci, 2016, 36(33): 8653-8667. [128] Lee JK, Jin HK, Park MH, et al.Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer's disease[J]. J Exp Med, 2014, 211(8): 1551-1570. [129] Panchal M, Gaudin M, Lazar AN, et al.Ceramides and sphingomyelinases in senile plaques[J]. Neurobiol Dis, 2014, 65: 193-201. [130] Kao YC, Ho PC, Tu YK, et al.Lipids and Alzheimer's Disease[J]. Int J Mol Sci, 2020, 21(4): 1505. [131] Kivipelto M, Helkala EL, Laakso MP, et al.Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease[J]. Ann Intern Med, 2002, 137(3): 149-155. [132] Solomon A, Kåreholt I, Ngandu T, et al.Serum total cholesterol, statins and cognition in non-demented elderly[J]. Neurobiol Aging, 2009, 30(6): 1006-1009. [133] Corder EH, Saunders AM, Strittmatter WJ, et al.Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families[J]. Science, 1993, 261(5123): 921-923.